首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文给出X为离散分布或连续分布时不同情况下数据的x2拟合优度检验.  相似文献   

2.
张道智 《应用数学》1989,2(3):59-64
一个寿命分布F称为属于新的比旧的好的分布类(NBU),若: R(x y)≤R(x)R(y) x,y≥0这里R(x)=1-F(x)。若R(x y)≥R(x)R(y),称作旧的比新的好(NWU)。本文讨论可靠性中应用非常广泛的NBU分布类的检验问题,即下列检验问题:原假设H_0:F是NBU的。备选假设H_A:F不是NBU。给出了检验函数。并证明了备选假设是H_A:F是NWU时,检验是无偏的。  相似文献   

3.
对于简单假设的拟合优度检验,Zhang (2002)构造出一类上界型检验.取不同的参数$lambda$和不同的权函数$q(t)$,这类检验包含了Kolmogorov-Smirov检验, Berk and Jones(1979)检验等已有的上界型检验.文献中仅对极少数$lambda$和$q(t)$所对应的检验给出了零假设下的精确分布.然而, 针对不同的问题, ``好'的检验是不同的,因此有必要对任意给定的$lambda$和$q(t)$情况, 讨论该类检验.本文对任意给定的$lambda$和$q(t)equiv 1$情况,导出了相应上界型检验统计量在零假设下的精确分布. 当样本容量$n$较大时,精确分布的计算时间较长, 本文还通过模拟比较得到了在不同样本量下,应采用的计算方法. 最后, 给出一个实际例子对前述方法加以简单说明.  相似文献   

4.
上界型拟合优度检验   总被引:1,自引:0,他引:1       下载免费PDF全文
对简单零假设情况,构造出一类上界型拟合优度检验.取不同的参数λ和不同的权函数,这类检验不仅包含许多已存在的检验,如Kolmogorov-Smirov检验,Berk-Jones检验等,而且还给出一些新的检验.众所周知,对不同的问题,\"最优\"的检验是不同的,有必要对这类检验的性质进行讨论.该文对任意给定的λ和较一般的权函数q(·),在较弱的条件下,导出了相应上界型检验统计量在零假设下的渐近分布,研究了它们的局部渐近功效;在若干固定备择假设下,对该类检验的功效进行了模拟研究.模拟结果表明,在不同的备择假设下,功效较优的检验是不同的,不存在对所有情况一致最优的检验.  相似文献   

5.
关于一维删截数据的拟合优度检验,已有相当多的文献,但高维截尾数据的拟合优度检验尚不多见.本文用PP技巧讨论了高维截尾数据的拟合优度检验,得到了检验统计量的渐近分布,并讨论了其Bootstrap逼近及逼近的相容性和检验的渐近功效.  相似文献   

6.
文章提出了一种基于拟合优度检验的非参数控制图,以实现对连续型数据的监控.所提出的方法不仅适用于单值观测的情况,也可用于分组样本.不同于传统的控制图要求数据服从正态分布,文章的方法不限制数据的分布,可用于正态以及非正态的任意分布;并且能够监控数据分布的变化,例如分布中的位置参数、尺度参数、以及形状参数等,仿真结果表明,文...  相似文献   

7.
设q维总体X的分布函数为G(x),对于零假设H0:G(x)=F(x),在F(x)完全已知时,文献[2]给出了其PPNyman型拟合优度检验。本文对F(x)为含有未知参数的椭球分布情形,给出了其PPNeyman到检验统计量,获得了检验统计量的极限分布,并给出了用Boot-strap技巧确定其否定域临界值的方法.  相似文献   

8.
基于Beta分布形状的拟合优度检验   总被引:1,自引:0,他引:1  
本文指出了拟合优度检验中选用经验频率公式时存在的误区,对顺序统计量失效概率分布进行了偏态和峰态分析,提出了一个基于Beta分布形状特征的经验分布函数,给出了精确值和近似值两种计算方法,在此基础上建立新的极值型检验统计量.利用Monte Carlo方法进行数值模拟,得到0.01、0.05、0.1显著度水平下检验统计量的临界值,并利用常用的分布模型进行检验功效比较,数值模拟结果表明基于分布形状的经验频率公式能更好地反映顺序统计量失效概率分布的集中趋势,证明了本文提出的两种检验统计量在中小样本条件下具有更优的检验功效.  相似文献   

9.
变系数部分线性模型的拟合优度检验   总被引:1,自引:0,他引:1  
本文考虑变系数部分线性模型的拟合优度检验问题.基于Profile经验似然方法,构造了参数部分和非参数部分的经验似然比检验统计量.并证明了其满足Wilks'现象,进而得到了一定置信水平的拒绝域.最后通过数据模拟,讨论了其检验功效.  相似文献   

10.
本文提出了一种基于随机选择投影方向的PP型棉球等高分布族的拟合优度检验,其特点是计算上较通常的PP检验统计量简单.得到了其检验统计量在零假设下的极限分布,讨论了其Bootstrap逼近及逼近的相容性.  相似文献   

11.
郭海燕  李纲 《运筹与管理》2004,13(4):106-109,154
经济的全球化、衍生产品的大量出现以及因此导致的金融市场的动荡使得金融机构越来越需要更有效的风险管理方法。而如何精确度量风险是风险管理的关键问题。本文试图从金融收益分布假设着手改善风险度量的精度。国外学者研究发现广义双曲线分布比其它分布形式可以更好地拟合实际收益分布特征。本文首次把广义双曲线分布应用到VaR的分析方法中计算我国股票指数的VaR。实证结果表明,基于广义双曲线分布的方法得到了较好的预测结果。  相似文献   

12.
由于广义双曲线分布在资产收益率分布拟合中的优异表现,以规模测度和速度测度为工具,构建出边际分布服从广义双曲线分布的扩散过程.利用1.5阶强泰勒近似法离散化随机微分方程,以二次最优鞅估计函数法得到模型参数估计量,结果显示:鞅估计函数法能够快速、准确地对正态逆高斯扩散过程作出参数估计,并且能获得高精度渐近协方差矩阵.  相似文献   

13.
N. Cressie and T. R. C. Read (1984, J. Roy. Statist. Soc. B46, 440–464) introduced a class of multinomial goodness-of-fit statistics Ra based on power divergence. All Ra have the same chi-square limiting distribution under null hypothesis and have the same noncentral chi-square limiting distribution under local alternatives. In this paper, we investigate asymptotic approximations for the distributions of Ra under local alternatives. We obtain an expression of approximation for the distribution of Ra under local alternatives. The expression consists of continuous and discontinuous terms. Using the continuous term of the expression, we propose a new approximation of the power of Ra. We call the approximation AE approximation. By numerical investigation of the accuracy of the AE approximation, we present a range of sample size n that the omission of the discontinuous term exercises only slight influence on power approximation of Ra. We find that the AE approximation is effective for a much wider range of the value of a than the other power approximations, except for an approximation method which requires high computer performance.  相似文献   

14.
本文对上证综指及深证成指的收益率进行了稳定分布拟合,并与正态分布的拟合加以比较分析,结果表明稳定分布能更好的处理股票市场中的“尖峰厚尾”现象。  相似文献   

15.
A test statistic for testing goodness-of-fit of the Cauchy distribution is presented. It is a quadratic form of the first and of the last order statistic and its matrix is the inverse of the asymptotic covariance matrix of the quantile difference statistic. The distribution of the presented test statistic does not depend on the parameter of the sampled Cauchy distribution. The paper contains critical constants for this test statistic, obtained from 50,000 simulations for each sample size considered. Simulations show that the presented test statistic is for testing goodness-of-fit of the Cauchy distributions more powerful than the Anderson-Darling, Kolmogorov-Smirnov or the von Mises test statistic.  相似文献   

16.
Risky asset models with the dependence through fractal activity time are described. The construction of the fractal activity time is implemented via superpositions of Ornstein-Uhlenbeck type processes driven by Lévy noise. The model features both tractable dependence structure and desired marginal distributions of the returns from the generalized hyperbolic class: the Variance Gamma and normal inverse Gaussian. These distributions provide good fit to real financial data. Pricing formulae for the proposed models are derived.  相似文献   

17.
This paper considers two flexible classes of omnibus goodness-of-fit tests for the inverse Gaussian distribution. The test statistics are weighted integrals over the squared modulus of some measure of deviation of the empirical distribution of given data from the family of inverse Gaussian laws, expressed by means of the empirical Laplace transform. Both classes of statistics are connected to the first nonzero component of Neyman's smooth test for the inverse Gaussian distribution. The tests, when implemented via the parametric bootstrap, maintain a nominal level of significance very closely. A large-scale simulation study shows that the new tests compare favorably with classical goodness-of-fit tests for the inverse Gaussian distribution, based on the empirical distribution function.  相似文献   

18.
Let X 1,...,X n be independent observations on a random variable X. This paper considers a class of omnibus procedures for testing the hypothesis that the unknown distribution of X belongs to the family of Cauchy laws. The test statistics are weighted integrals of the squared modulus of the difference between the empirical characteristic function of the suitably standardized data and the characteristic function of the standard Cauchy distribution. A large-scale simulation study shows that the new tests compare favorably with the classical goodness-of-fit tests for the Cauchy distribution, based on the empirical distribution function. For small sample sizes and short-tailed alternatives, the uniformly most powerful invariant test of Cauchy versus normal beats all other tests under discussion.  相似文献   

19.
Lars Holst 《Extremes》2001,4(2):129-145
Take n independent copies of a strictly positive random variable X and divide each copy with the sum of the copies, thus obtaining n random probabilities summing to one. These probabilities are used in independent multinomial trials with n outcomes. Let N n(N * n) be the number of trials needed until each (some) outcome has occurred at least c times. By embedding the sampling procedure in a Poisson point process the distributions of N n and N * n can be expressed using extremes of independent identically distributed random variables. Using this, asymptotic distributions as n are obtained from classical extreme value theory. The limits are determined by the behavior of the Laplace transform of X close to the origin or at infinity. Some examples are studied in detail.  相似文献   

20.
Asymptotic expansions for large deviation probabilities are used to approximate the cumulative distribution functions of noncentral generalized chi-square distributions, preferably in the far tails. The basic idea of how to deal with the tail probabilities consists in first rewriting these probabilities as large parameter values of the Laplace transform of a suitably defined function fk; second making a series expansion of this function, and third applying a certain modification of Watson's lemma. The function fk is deduced by applying a geometric representation formula for spherical measures to the multivariate domain of large deviations under consideration. At the so-called dominating point, the largest main curvature of the boundary of this domain tends to one as the large deviation parameter approaches infinity. Therefore, the dominating point degenerates asymptotically. For this reason the recent multivariate asymptotic expansion for large deviations in Breitung and Richter (1996, J. Multivariate Anal.58, 1–20) does not apply. Assuming a suitably parametrized expansion for the inverse g−1 of the negative logarithm of the density-generating function, we derive a series expansion for the function fk. Note that low-order coefficients from the expansion of g−1 influence practically all coefficients in the expansion of the tail probabilities. As an application, classification probabilities when using the quadratic discriminant function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号