首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Let A be a matrix in r×r such that Re(z) > −1/2 for all the eigenvalues of A and let {πn(A,1/2) (x)} be the normalized sequence of Laguerre matrix polynomials associated with A. In this paper, it is proved that πn(A,1/2) (x) = O(n(A)/2lnr−1(n)) and πn+1(A,1/2) (x) − πn(A,1/2) (x) = O(n((A)−1)/2lnr−1(n)) uniformly on bounded intervals, where (A) = max{Re(z); z eigenvalue of A}.  相似文献   

2.
Careful calculations using classical field theory show that if a macroscopic ball with uniform surface charge (say, a billiard ball with 1E6 excess electrons) is released near the surface of the earth, it will almost instantaneously accelerate to relativistic speed and blow a hole in the ground. This absurd prediction is just the macroscopic version of the self-force problem for charged particles [1]. Furthermore, if one attempts to develop from electromagnetism a parallel theory for gravitational [2], the result is the same, self-acceleration.

The basis of the new theory is a measure of energy density for any wave equation [3–5]. Given any solution of any four-vector wave equation in spacetime (for example, the potentials (c-1φA)=(A0,A1,A2,A3) in electromagnetism), one can form the 16th first order partial derivatives of the vector components, with respect to the time and space variables (ct,x) = (x0, x1, x2, x3). The sum of the squares of the 16 terms is a natural energy function [6, p. 283] (satisfying a conservation law . Such energy functions are routinely utilized by mathematicians as Lyapunov functions in the theory of stability of waves with boundary conditions. A Lagrangian using this sum leads to a new energy tensor for electromagnetic and gravitational fields, an alternative to that in [7].  相似文献   


3.
In 2006, Sullivan stated the conjectures:(1) every oriented graph has a vertex x such that d~(++)(x) ≥ d~-(x);(2) every oriented graph has a vertex x such that d~(++)(x) + d~+(x) ≥ 2 d~-(x);(3) every oriented graph has a vertex x such that d~(++)(x) + d~+(x) ≥ 2 · min{d~+(x), d~-(x)}. A vertex x in D satisfying Conjecture(i) is called a Sullivan-i vertex, i = 1, 2, 3. A digraph D is called quasi-transitive if for every pair xy, yz of arcs between distinct vertices x, y, z, xz or zx("or" is inclusive here) is in D. In this paper, we prove that the conjectures hold for quasi-transitive oriented graphs, which is a superclass of tournaments and transitive acyclic digraphs. Furthermore, we show that a quasi-transitive oriented graph with no vertex of in-degree zero has at least three Sullivan-1 vertices and a quasi-transitive oriented graph has at least three Sullivan-3 vertices unless it belongs to an exceptional class of quasitransitive oriented graphs. For Sullivan-2 vertices, we show that an extended tournament, a subclass of quasi-transitive oriented graphs and a superclass of tournaments, has at least two Sullivan-2 vertices unless it belongs to an exceptional class of extended tournaments.  相似文献   

4.
Let a(n)be the Fourier coefficients of a holomorphic cusp form of weightκ=2n≥12 for the full modular group and A(x)=∑_(n≤x)a(n).In this paper,we establish an asymptotic formula of the fourth power moment of A(x)and prove that ∫T1A~4(x)dx=3/(64κπ~4)s_4;2()T~(2κ)+O(T~(2κ-δ_4+ε))with δ_4=1/8,which improves the previous result.  相似文献   

5.
Let D(v,b,r,k,λ) be any quasi-symmetric block design with block intersection numbers 0 and y. Suppose D has no three mutually disjoint blocks. We show that for a given value of y, there are only finitely many parameter sets of such designs. Moreover, the ‘extremal’ designs D have one of the following parameter sets: (1) v = 4y, k = 2y, λ = 2y − 1 (y 2) (2) v = y(y2+3y+1), k = y(y+1), λ =y2+y−1(y2) (3) v = (y+1)(y2+2y−1), k = y(y+1), λ =y2 (y2) A computer search revealed only three parameter sets in the range 1y199, which are not of the above types.  相似文献   

6.
Let G = (V,E) be a graph with m edges. For reals p ∈ [0, 1] and q = 1- p, let mp(G) be the minimum of qe(V1) +pe(V2) over partitions V = V1V2, where e(Vi) denotes the number of edges spanned by Vi. We show that if mp(G) = pqm-δ, then there exists a bipartition V1, V2 of G such that e(V1) ≤ p2m - δ + pm/2 + o(√m) and e(V2) ≤ q2m - δ + qm/2 + o(√m) for δ = o(m2/3). This is sharp for complete graphs up to the error term o(√m). For an integer k ≥ 2, let fk(G) denote the maximum number of edges in a k-partite subgraph of G. We prove that if fk(G) = (1 - 1/k)m + α, then G admits a k-partition such that each vertex class spans at most m/k2 - Ω(m/k7.5) edges for α = Ω(m/k6). Both of the above improve the results of Bollobás and Scott.  相似文献   

7.
Let Mn be the algebra of all n × n complex matrices. For 1 k n, the kth numerical range of A Mn is defined by Wk(A) = (1/k)jk=1xj*Axj : x1, …, xk is an orthonormal set in n]. It is known that tr A/n = Wn(A) Wn−1(A) W1(A). We study the condition on A under which Wm(A) = Wk(A) for some given 1 m < k n. It turns out that this study is closely related to a conjecture of Kippenhahn on Hermitian pencils. A new class of counterexamples to the conjecture is constructed, based on the theory of the numerical range.  相似文献   

8.
In this paper we propose a general approach by which eigenvalues with a special property of a given matrix A can be obtained. In this approach we first determine a scalar function ψ: C → C whose modulus is maximized by the eigenvalues that have the special property. Next, we compute the generalized power iterations uinj + 1 = ψ(A)uj, j = 0, 1,…, where u0 is an arbitrary initial vector. Finally, we apply known Krylov subspace methods, such as the Arnoldi and Lanczos methods, to the vector un for some sufficiently large n. We can also apply the simultaneous iteration method to the subspace span{x(n)1,…,x(n)k} with some sufficiently large n, where x(j+1)m = ψ(A)x(j)m, j = 0, 1,…, m = 1,…, k. In all cases the resulting Ritz pairs are approximations to the eigenpairs of A with the special property. We provide a rather thorough convergence analysis of the approach involving all three methods as n → ∞ for the case in which A is a normal matrix. We also discuss the connections and similarities of our approach with the existing methods and approaches in the literature.  相似文献   

9.
Associated to any simplicial complex Δ on n vertices is a square-free monomial ideal IΔ in the polynomial ring A = k[x1, …, xn], and its quotient k[Δ] = A/IΔ known as the Stanley-Reisner ring. This note considers a simplicial complex Δ* which is in a sense a canonical Alexander dual to Δ, previously considered in [1, 5]. Using Alexander duality and a result of Hochster computing the Betti numbers dimk ToriA (k[Δ],k), it is shown (Proposition 1) that these Betti numbers are computable from the homology of links of faces in Δ*. As corollaries, we prove that IΔ has a linear resolution as A-module if and only if Δ* is Cohen-Macaulay over k, and show how to compute the Betti numbers dimk ToriA (k[Δ],k) in some cases where Δ* is wellbehaved (shellable, Cohen-Macaulay, or Buchsbaum). Some other applications of the notion of shellability are also discussed.  相似文献   

10.
We obtain an approximation for the logarithmic averages of I{k1/2a(k) S(k) k1/2b(k)}, where a(k) → 0, b(k) → 0 (k → ∞) and S(k) is partial sum of independent, identically distributed random variables.  相似文献   

11.
We partially characterize the rational numbers x and integers n 0 for which the sum ∑k=0 knxk assumes integers. We prove that if ∑k=0 knxk is an integer for x = 1 − a/b with a, b> 0 integers and gcd(a,b) = 1, then a = 1 or 2. Partial results and conjectures are given which indicate for which b and n it is an integer if a = 2. The proof is based on lower bounds on the multiplicities of factors of the Stirling number of the second kind, S(n,k). More specifically, we obtain for all integers k, 2 k n, and a 3, provided a is odd or divisible by 4, where va(m) denotes the exponent of the highest power of a which divides m, for m and a> 1 integers.

New identities are also derived for the Stirling numbers, e.g., we show that ∑k=02nk! S(2n, k) , for all integers n 1.  相似文献   


12.
Let[2+k2n(x1,x3)]u(x1,x2,x3)=−δ(x1,y1δ(x2,y2)δ(x3,y3) in R3+. Assume that u(x1,x2,x3=0,y1,y2=0,y3=0,k) is measured at the plane P {x:x3=0} for all positions of the source on the line y = (y1,y2 = 0,y3 = 0), -∞ < y1 < ∞, and receiver on the plane(x1,x2,x3 − <x1,x2 < ∞, and for low-frequencies 0 < k <k0, k0 > 0 is an arbitrary small wave number. Assume thatn(x1,x3) is an arbitrary bounded piecewise-continuous function. The basic result is: the above low-frequency surface data determinen(x1,x3)uniquely.  相似文献   

13.
The well-known Lyapunov's theorem in matrix theory / continuous dynamical systems asserts that a (complex) square matrix A is positive stable (i.e., all eigenvalues lie in the open right-half plane) if and only if there exists a positive definite matrix X such that AX+XA* is positive definite. In this paper, we prove a complementarity form of this theorem: A is positive stable if and only if for any Hermitian matrix Q, there exists a positive semidefinite matrix X such that AX+XA*+Q is positive semidefinite and X[AX+XA*+Q]=0. By considering cone complementarity problems corresponding to linear transformations of the form IS, we show that a (complex) matrix A has all eigenvalues in the open unit disk of the complex plane if and only if for every Hermitian matrix Q, there exists a positive semidefinite matrix X such that XAXA*+Q is positive semidefinite and X[XAXA*+Q]=0. By specializing Q (to −I), we deduce the well known Stein's theorem in discrete linear dynamical systems: A has all eigenvalues in the open unit disk if and only if there exists a positive definite matrix X such that XAXA* is positive definite.  相似文献   

14.
Let ex* (D;H) be the maximum number of edges in a connected graph with maximum degree D and no induced subgraph H; this is finite if and only if H is a disjoint union of paths. If the largest component of such an H has order m, then ex*(D; H) = O(D2ex*(D; Pm)). Constructively, ex*(D;qPm) = Θ(gD2ex*(D;Pm)) if q>1 and m> 2(Θ(gD2) if m = 2). For H = 2P3 (and D 8), the maximum number of edges is if D is even and if D is odd, achieved by a unique extremal graph.  相似文献   

15.
We study the problem of designing fault-tolerant routings with small routing tables for a k-connected network of n processors in the surviving route graph model. The surviving route graph R(G,ρ)/F for a graph G, a routing ρ and a set of faults F is a directed graph consisting of nonfaulty nodes of G with a directed edge from a node x to a node y iff there are no faults on the route from x to y. The diameter of the surviving route graph could be one of the fault-tolerance measures for the graph G and the routing ρ and it is denoted by D(R(G,ρ)/F). We want to reduce the total number of routes defined in the routing, and the maximum of the number of routes defined for a node (called route degree) as least as possible. In this paper, we show that we can construct a routing λ for every n-node k-connected graph such that n2k2, in which the route degree is , the total number of routes is O(k2n) and D(R(G,λ)/F)3 for any fault set F (|F|<k). In particular, in the case that k=2 we can construct a routing λ′ for every biconnected graph in which the route degree is , the total number of routes is O(n) and D(R(G,λ′)/{f})3 for any fault f. We also show that we can construct a routing ρ1 for every n-node biconnected graph, in which the total number of routes is O(n) and D(R(G1)/{f})2 for any fault f, and a routing ρ2 (using ρ1) for every n-node biconnected graph, in which the route degree is , the total number of routes is and D(R(G2)/{f})2 for any fault f.  相似文献   

16.
This paper presents an explicit expression for the generalized inverse A(2)T,S. Based on this, we established the characterization, the representation theorem and the limiting process for A(2)T,S. As an application, we estimate the error bound of the iterative method for approximating A(2)T,S.  相似文献   

17.
In this paper, we develop implicit difference schemes of O(k4 + k2h2 + h4), where k > 0, h > 0 are grid sizes in time and space coordinates, respectively, for solving the system of two space dimensional second order nonlinear hyperbolic partial differential equations with variable coefficients having mixed derivatives subject to appropriate initial and boundary conditions. The proposed difference method for the scalar equation is applied for the solution of wave equation in polar coordinates to obtain three level conditionally stable ADI method of O(k4 + k2h2 + h4). Some physical nonlinear problems are provided to demonstrate the accuracy of the implementation.  相似文献   

18.
Let denote a field, and let V denote a vector space over with finite positive dimension. We consider a pair of linear transformations A:VV and A*:VV satisfying both conditions below:

1. [(i)] There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A* is irreducible tridiagonal.

2. [(ii)] There exists a basis for V with respect to which the matrix representing A* is diagonal and the matrix representing A is irreducible tridiagonal.

We call such a pair a Leonard pair on V. Refining this notion a bit, we introduce the concept of a Leonard system. We give a complete classification of Leonard systems. Integral to our proof is the following result. We show that for any Leonard pair A,A* on V, there exists a sequence of scalars β,γ,γ*,,* taken from such that both

where [r,s] means rssr. The sequence is uniquely determined by the Leonard pair if the dimension of V is at least 4. We conclude by showing how Leonard systems correspond to q-Racah and related polynomials from the Askey scheme.  相似文献   


19.
20.
LetF be a field with (nontrivial) involution (i.e.F-conjugation). A nonsingular matrix Aover Fis called a complic F-cosquare provided A=S*-1for some matrix Sover Fand is called p.i. (pseudo-involutory) provided A=A-1 It is shown that Ais a complic F-cosquare iff Ais the product of two p.i. matrices over Fand that det (AA)=1 iff Ais the product of two complic F-cosquares (hence iff A is the product of four p.i. matrices over F). It is conjectured that, except for one obvious case (2 x 2 matrices over the field of order 2), every unimodular matrix A over an arbitrary field Fis a product S1ST:1T with S1 and Tover FThis conjecture is proved for matricesAof order ≤3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号