首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
Let A be a von Neumann algebra with no central abelian projections. It is proved that if an additive map δ :A → A satisfies δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] +[[a, b], δ(c)] for any a, b, c∈ A with ab = 0(resp. ab = P, where P is a fixed nontrivial projection in A), then there exist an additive derivation d from A into itself and an additive map f :A → ZA vanishing at every second commutator [[a, b], c] with ab = 0(resp.ab = P) such that δ(a) = d(a) + f(a) for any a∈ A.  相似文献   

3.
Let \(\mathfrak{q}\)(n) be a simple strange Lie superalgebra over the complex field ?. In a paper by A.Ayupov, K.Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over ? and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but \(\mathfrak{p}\)(n) is an exception. In this paper, we introduce the definition of the local superderivation on \(\mathfrak{q}\)(n), give the structures and properties of the local superderivations of \(\mathfrak{q}\)(n), and prove that every local superderivation on \(\mathfrak{q}\)(n), n > 3, is a superderivation.  相似文献   

4.
For a finite group G, the set of all prime divisors of |G| is denoted by π(G). P. Shumyatsky introduced the following conjecture, which was included in the “Kourovka Notebook” as Question 17.125: a finite group G always contains a pair of conjugate elements a and b such that π(G) = π(〈a, b〉). Denote by \(\mathfrak{Y}\) the class of all finite groups G such that π(H) ≠ π(G) for every maximal subgroup H in G. Shumyatsky’s conjecture is equivalent to the following conjecture: every group from \(\mathfrak{Y}\) is generated by two conjugate elements. Let \(\mathfrak{V}\) be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that \(\mathfrak{V} \subseteq \mathfrak{Y}\). We prove that every group from \(\mathfrak{V}\) is generated by two conjugate elements. Thus, Shumyatsky’s conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatsky’s conjecture.  相似文献   

5.
Let Q0 be the classical generalized quadrangle of order q = 2n(n≥2) arising from a non-degenerate quadratic form in a 5-dimensional vector space defined over a finite field of order q. We consider the rank two geometry \(\mathcal {X}\) having as points all the elliptic ovoids of Q0 and as lines the maximal pencils of elliptic ovoids of Q0 pairwise tangent at the same point. We first prove that \(\mathcal {X}\) is isomorphic to a 2-fold quotient of the affine generalized quadrangle Q?Q0, where Q is the classical (q,q2)-generalized quadrangle admitting Q0 as a hyperplane. Further, we classify the cliques in the collinearity graph Γ of \(\mathcal {X}\). We prove that any maximal clique in Γ is either a line of \(\mathcal {X}\) or it consists of 6 or 4 points of \(\mathcal {X}\) not contained in any line of \(\mathcal {X}\), accordingly as n is odd or even. We count the number of cliques of each type and show that those cliques which are not contained in lines of \(\mathcal {X}\) arise as subgeometries of Q defined over \(\mathbb {F}_{2}\).  相似文献   

6.
Pérez-Izquierdo and Shestakov recently extended the PBW theorem to Malcev algebras. It follows from their construction that for any Malcev algebra M over a field of characteristic ≠ 2, 3 there is a representation of the universal nonassociative enveloping algebra U(M) by linear operators on the polynomial algebra P(M). For the nilpotent non-Lie Malcev algebra \(\mathbb{M}\) of dimension 5, we use this representation to determine explicit structure constants for \(U(\mathbb{M})\); from this it follows that \(U(\mathbb{M})\) is not power-associative. We obtain a finite set of generators for the alternator ideal \(I(\mathbb{M}) \subset U(\mathbb{M})\) and derive structure constants for the universal alternative enveloping algebra \(A(\mathbb{M}) = U(\mathbb{M})/I(\mathbb{M})\), a new infinite dimensional alternative algebra. We verify that the map \(\iota\colon \mathbb{M} \to A(\mathbb{M})\) is injective, and so \(\mathbb{M}\) is special.  相似文献   

7.
Generalizing an idea used by Bouc, Thévenaz, Webb and others, we introduce the notion of an admissible R-linear category for a commutative unital ring R. Given an R-linear category \(\mathcal {L}\), we define an \(\mathcal {L}\)-functor to be a functor from \(\mathcal {L}\) to the category of R-modules. In the case where \(\mathcal {L}\) is admissible, we establish a bijective correspondence between the isomorphism classes of simple functors and the equivalence classes of pairs (G, V) where G is an object and V is a module of a certain quotient of the endomorphism algebra of G. Here, two pairs (F, U) and (G, V) are equivalent provided there exists an isomorphism FG effecting transport to U from V. We apply this to the category of finite abelian p-groups and to a class of subcategories of the biset category.  相似文献   

8.
For P ? \(\mathbb{F}_2 \)[z] with P(0) = 1 and deg(P) ≥ 1, let \(\mathcal{A}\) = \(\mathcal{A}\)(P) (cf. [4], [5], [13]) be the unique subset of ? such that Σ n≥0 p(\(\mathcal{A}\), n)z n P(z) (mod 2), where p(\(\mathcal{A}\), n) is the number of partitions of n with parts in \(\mathcal{A}\). Let p be an odd prime and P ? \(\mathbb{F}_2 \)[z] be some irreducible polynomial of order p, i.e., p is the smallest positive integer such that P(z) divides 1 + z p in \(\mathbb{F}_2 \)[z]. In this paper, we prove that if m is an odd positive integer, the elements of \(\mathcal{A}\) = \(\mathcal{A}\)(P) of the form 2 k m are determined by the 2-adic expansion of some root of a polynomial with integer coefficients. This extends a result of F. Ben Saïd and J.-L. Nicolas [6] to all primes p.  相似文献   

9.
Let Z(t) be the classical Hardy function in the theory of Riemann’s zeta-function. An asymptotic formula with an error term O(T 1/6log?T) is given for the integral of Z(t) over the interval [0,T], with special attention paid to the critical cases when the fractional part of \(\sqrt{T/2\pi }\) is close to \(\frac{1}{4}\) or \(\frac{3}{4}\).  相似文献   

10.
Any commutative, cancellative semigroup S with 0 equipped with a uniformity can be embedded in a topological group \(\widetilde{S}\). We introduce the notion of semigroup symmetry T which enables us to turn \(\widetilde{S}\) into an involutive group. In Theorem 2.8 we prove that if S is 2-torsion-free and T is 2-divisible then the decomposition of elements of \(\widetilde{S}\) into a sum of elements of the symmetric subgroup \(\widetilde{S}_{s}\) and the asymmetric subgroup \(\widetilde{S}_{a}\) is polar. In Theorem 3.7 we give conditions under which a topological group \(\widetilde{S}\) is a topological direct sum of its symmetric subgroup \(\widetilde{S}_{s}\) and its asymmetric subgroup \(\widetilde{S}_{a}\). Theorem 2.8 and Theorem 3.7 are designed to be useful tools in studying Minkowski–Rådström–Hörmander spaces (and related topological groups \(\widetilde{S}\)), which are natural extensions of semigroups of bounded closed convex subsets of real Hausdorff topological vector spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号