首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
For any grading by an abelian group G on the exceptional simple Lie algebra \(\mathcal {L}\) of type E 6 or E 7 over an algebraically closed field of characteristic zero, we compute the graded Brauer invariants of simple finite-dimensional modules, thus completing the computation of these invariants for simple finite-dimensional Lie algebras. This yields the classification of finite-dimensional G-graded simple \(\mathcal {L}\)-modules, as well as necessary and sufficient conditions for a finite-dimensional \(\mathcal {L}\)-module to admit a G-grading compatible with the given G-grading on \(\mathcal {L}\).  相似文献   

2.
Let \(\mathcal{A} = \mathbb{F}[x,y]\) be the polynomial algebra on two variables x, y over an algebraically closed field \(\mathbb{F}\) of characteristic zero. Under the Poisson bracket, \(\mathcal{A}\) is equipped with a natural Lie algebra structure. It is proven that the maximal good subspace of \(\mathcal{A}*\) induced from the multiplication of the associative commutative algebra \(\mathcal{A}\) coincides with the maximal good subspace of \(\mathcal{A}*\) induced from the Poisson bracket of the Poisson Lie algebra \(\mathcal{A}\). Based on this, structures of dual Lie bialgebras of the Poisson type are investigated. As by-products, five classes of new infinite-dimensional Lie algebras are obtained.  相似文献   

3.
For the algebra \(\mathcal {A}\) in the title, its prime, primitive and maximal spectra are classified. The group of automorphisms of \(\mathcal {A}\) is determined. The simple unfaithful \(\mathcal {A}\)-modules and the simple weight \(\mathcal {A}\)-modules are classified.  相似文献   

4.
Let \(U'_q(\mathfrak {g})\) be a twisted affine quantum group of type \(A_{N}^{(2)}\) or \(D_{N}^{(2)}\) and let \(\mathfrak {g}_{0}\) be the finite-dimensional simple Lie algebra of type \(A_{N}\) or \(D_{N}\). For a Dynkin quiver of type \(\mathfrak {g}_{0}\), we define a full subcategory \({\mathcal C}_{Q}^{(2)}\) of the category of finite-dimensional integrable \(U'_q(\mathfrak {g})\)-modules, a twisted version of the category \({\mathcal C}^{(1)}_{Q}\) introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur–Weyl duality, we construct an exact faithful KLR-type duality functor \({\mathcal F}_{Q}^{(2)}:\mathrm{Rep}(R) \rightarrow {\mathcal C}_{Q}^{(2)}\), where \(\mathrm{Rep}(R)\) is the category of finite-dimensional modules over the quiver Hecke algebra R of type \(\mathfrak {g}_{0}\) with nilpotent actions of the generators \(x_k\). We show that \({\mathcal F}_{Q}^{(2)}\) sends any simple object to a simple object and induces a ring isomorphism Open image in new window .  相似文献   

5.
We investigate boundary representations in the context where Hilbert spaces are replaced by \(\hbox {C}^{*}\)-modules over abelian von Neumann algebras and apply this to study \(\hbox {C}^{*}\)-extreme points. We present an (unexpected) example of a weak* compact \(\mathcal {B}\)-convex subset of \({\mathbb {B}}(\mathcal {H})\) without \(\mathcal {B}\)-extreme points, where \(\mathcal {B}\) is an abelian von Neumann algebra on a Hilbert space \(\mathcal {H}\). On the other hand, if \(\mathcal {A}\) is a von Neumann algebra with a separable predual and whose finite part is injective, we show that each weak* compact \(\mathcal {A}\)-convex subset of \(\ell ^{\infty }(\mathcal {A})\) is generated by its \(\mathcal {A}\)-extreme points.  相似文献   

6.
We propose a polynomial time f-algorithm (a deterministic algorithm which uses an oracle for factoring univariate polynomials over \(\mathbb {F}_q\)) for computing an isomorphism (if there is any) of a finite-dimensional \(\mathbb {F}_q(x)\)-algebra \(\mathcal{A}\) given by structure constants with the algebra of n by n matrices with entries from \(\mathbb {F}_q(x)\). The method is based on computing a finite \(\mathbb {F}_q\)-subalgebra of \(\mathcal{A}\) which is the intersection of a maximal \(\mathbb {F}_q[x]\)-order and a maximal R-order, where R is the subring of \(\mathbb {F}_q(x)\) consisting of fractions of polynomials with denominator having degree not less than that of the numerator.  相似文献   

7.
We discuss the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld category \({\mathcal D}({\mathfrak g},\hbar)\) of \({\mathfrak g}\)-modules and the category of finite dimensional \(U_q{\mathfrak g}\)-modules, \(q=e^{\pi i\hbar}\), for \(\hbar\in{\mathbb C}\setminus{\mathbb Q}^*\). Aiming at operator algebraists the result is formulated as the existence for each \(\hbar\in i{\mathbb R}\) of a normalized unitary 2-cochain \({\mathcal F}\) on the dual \(\hat G\) of a compact simple Lie group G such that the convolution algebra of G with the coproduct twisted by \({\mathcal F}\) is *-isomorphic to the convolution algebra of the q-deformation G q of G, while the coboundary of \({\mathcal F}^{-1}\) coincides with Drinfeld’s KZ-associator defined via monodromy of the Knizhnik–Zamolodchikov equations.  相似文献   

8.
Let \(\mathcal {A}\subset \left( {\begin{array}{c}[n]\\ r\end{array}}\right) \) be a compressed, intersecting family and let \(X\subset [n]\). Let \(\mathcal {A}(X)=\{A\in \mathcal {A}:A\cap X\ne \emptyset \}\) and \(\mathcal {S}_{n,r}=\left( {\begin{array}{c}[n]\\ r\end{array}}\right) (\{1\})\). Motivated by the Erd?s–Ko–Rado theorem, Borg asked for which \(X\subset [2,n]\) do we have \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\) for all compressed, intersecting families \(\mathcal {A}\)? We call X that satisfy this property EKR. Borg classified EKR sets X such that \(|X|\ge r\). Barber classified X, with \(|X|\le r\), such that X is EKR for sufficiently large n, and asked how large n must be. We prove n is sufficiently large when n grows quadratically in r. In the case where \(\mathcal {A}\) has a maximal element, we sharpen this bound to \(n>\varphi ^{2}r\) implies \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\). We conclude by giving a generating function that speeds up computation of \(|\mathcal {A}(X)|\) in comparison with the naïve methods.  相似文献   

9.
Let \(\mathcal{A}\) be a representation finite algebra over finite field k. In this note we first show that the existence of Hall polynomials for \(\mathcal{A}\) equivalent to the existence of the Hall polynomial \(\varphi^{M}_{N L}\) for each \(M, L \in mod\mathcal{A}\) and \(N\in ind\mathcal{A}\). Then we show that for a basic connected Nakayama algebra \(\mathcal{A}\), \(\mathcal{H}(\mathcal{A})=\mathcal{L}(\mathcal{A})\) and Hall polynomials exist for this algebra. We also provide another proof of the existence of Hall polynomials for the representation directed split algebras.  相似文献   

10.
Let n be a positive integer, and \(\mathfrak {A}(n)=\mathbb {F}[x]/(x^{p^{n}})\), the divided power algebra over an algebraically closed field \(\mathbb {F}\) of prime characteristic p >?2. Let π(n) be the tensor product of \(\mathfrak {A}(n)\) and the Grassmann superalgebra \(\bigwedge (1)\) in one variable. The Zassenhaus superalgebra \(\mathcal {Z}(n)\) is defined to be the Lie superalgebra of the special super derivations of the superalgebra π(n). In this paper we study simple modules over the Zassenhaus superalgebra \(\mathcal {Z}(n)\) with p-characters of height 0. We give a complete classification of the isomorphism classes of such simple modules and determine their dimensions. A sufficient and necessary condition for the irreducibility of Kac modules is obtained.  相似文献   

11.
We consider the quantum symmetric pair \((\mathcal {U}_{q}(\mathfrak {su}(3)), \mathcal {B})\) where \(\mathcal {B}\) is a right coideal subalgebra. We prove that all finite-dimensional irreducible representations of \(\mathcal {B}\) are weight representations and are characterised by their highest weight and dimension. We show that the restriction of a finite-dimensional irreducible representation of \(\mathcal {U}_{q}(\mathfrak {su}(3))\) to \(\mathcal {B}\) decomposes multiplicity free into irreducible representations of \(\mathcal {B}\). Furthermore we give explicit expressions for the highest weight vectors in this decomposition in terms of dual q-Krawtchouk polynomials.  相似文献   

12.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

13.
Category \(\mathcal{O}\) is a nice category of modules for a finite dimensional semisimple Lie algebra \(\mathfrak{g}\) It was first introduced by Bernstein–Gelfand–Gelfand in 1976. In the early 1980’s, Rocha–Caridi introduced parabolic category \(\mathcal{O}_S\), where S is a subset of simple roots. Category \(\mathcal{O}_S\) is a generalization of ordinary category O. These are highest weight categories that decompose into certain subcategories, called infinitesimal blocks. An infinitesimal block contains at most finitely many simple modules, and some contain only the zero module. The representation type of the infinitesimal blocks of category \(\mathcal{O}_S\) has been studied by Futorny–Nakano–Pollack, Brüstle–König–Mazorchuk, and Boe–Nakano. The representation type of the singular blocks of category \(\mathcal{O}_S\) is still generally unknown, though Boe–Nakano classified certain of these. Understanding when a singular block is zero is an important step to understanding the singular blocks in general. In this work, we will answer this question. It is given in terms of nilpotent orbits of \(\mathfrak{g}\).  相似文献   

14.
Let \(\mathcal {A}\) be a Hom-finite additive Krull-Schmidt k-category where k is an algebraically closed field. Let \(\text {mod}\mathcal {A}\) denote the category of locally finite dimensional \(\mathcal {A}\)-modules, that is, the category of covariant functors \(\mathcal {A} \to \text {mod}k\). We prove that an irreducible monomorphism in \(\text {mod}\mathcal {A}\) has a finitely generated cokernel, and that an irreducible epimorphism in \(\text {mod}\mathcal {A}\) has a finitely co-generated kernel. Using this, we get that an almost split sequence in \(\text {mod}\mathcal {A}\) has to start with a finitely co-presented module and end with a finitely presented one. Finally, we apply our results to the study of rep(Q), the category of locally finite dimensional representations of a strongly locally finite quiver. We describe all possible shapes of the Auslander-Reiten quiver of rep(Q).  相似文献   

15.
Let \(\mathfrak {g}\) be a simple complex Lie algebra and let \(\mathfrak {t} \subset \mathfrak {g}\) be a toral subalgebra of \(\mathfrak {g}\). As a \(\mathfrak {t}\)-module \(\mathfrak {g}\) decomposes as
$$\mathfrak{g} = \mathfrak{s} \oplus \left( \oplus_{\nu \in \mathcal{R}}~ \mathfrak{g}^{\nu}\right)$$
where \(\mathfrak {s} \subset \mathfrak {g}\) is the reductive part of a parabolic subalgebra of \(\mathfrak {g}\) and \(\mathcal {R}\) is the Kostant root system associated to \(\mathfrak {t}\). When \(\mathfrak {t}\) is a Cartan subalgebra of \(\mathfrak {g}\) the decomposition above is nothing but the root decomposition of \(\mathfrak {g}\) with respect to \(\mathfrak {t}\); in general the properties of \(\mathcal {R}\) resemble the properties of usual root systems. In this note we study the following problem: “Given a subset \(\mathcal {S} \subset \mathcal {R}\), is there a parabolic subalgebra \(\mathfrak {p}\) of \(\mathfrak {g}\) containing \(\mathcal {M} = \oplus _{\nu \in \mathcal {S}} \mathfrak {g}^{\nu }\) and whose reductive part equals \(\mathfrak {s}\)?”. Our main results is that, for a classical simple Lie algebra \(\mathfrak {g}\) and a saturated \(\mathcal {S} \subset \mathcal {R}\), the condition \((\text {Sym}^{\cdot }(\mathcal {M}))^{\mathfrak {s}} = \mathbb {C}\) is necessary and sufficient for the existence of such a \(\mathfrak {p}\). In contrast, we show that this statement is no longer true for the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case when \(\mathcal {S}\) is not saturated.
  相似文献   

16.
Let \(\mathcal{H}\) be an infinite dimensional complex Hilbert space and \(\mathcal{A}\) be a standard operator algebra on \(\mathcal{H}\) which is closed under the adjoint operation. It is shown that each nonlinear *-Lie-type derivation δ on \(\mathcal{A}\) is a linear *-derivation. Moreover, δ is an inner *-derivation as well.  相似文献   

17.
Let k be a commutative ring, \(\mathcal {A}\) and \(\mathcal {B}\) – two k-linear categories with an action of a group G. We introduce the notion of a standard G-equivalence from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\), where \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) is the homotopy category of finitely generated projective \(\mathcal {A}\)-complexes. We construct a map from the set of standard G-equivalences to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) and a map from the set of standard G-equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {B}/G)\) to \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {A}/G)\), where \(\mathcal {A}/G\) denotes the orbit category. We investigate the properties of these maps and apply our results to the case where \(\mathcal {A}=\mathcal {B}=R\) is a Frobenius k-algebra and G is the cyclic group generated by its Nakayama automorphism ν. We apply this technique to obtain the generating set of the derived Picard group of a Frobenius Nakayama algebra over an algebraically closed field.  相似文献   

18.
Let \(\mathcal {A}=(A_n)_{n\in \mathbb {N}}\) be an ascending chain of commutative rings with identity and let \(\mathcal {A}[X]\) (respectively, \(\mathcal {A}[[X]]\)) be the ring of polynomials (respectively, power series) with coefficient of degree n in \(A_n\) for each \(n\in \mathbb {N}\) (Hamed and Hizem in Commun Algebra 43:3848–3856, 2015; Haouat in Thèse de doctorat. Faculté des Sciences de Tunis, 1988). An A-module M is said to satisfy ACCR if the ascending chain of residuals of the form \(N:B\subseteq N:B^2\subseteq N:B^3\subseteq \cdots \) terminates for every submodule N of M and for every finitely generated ideal B of A (Lu in Proc Am Math Soc 117:5–10, 1993). We give necessary and sufficient condition for the ring \(\mathcal {A}[X]\) (respectively, \(\mathcal {A}[[X]]\)) to satisfy ACCR.  相似文献   

19.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号