首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

2.
提出了一种嵌入式多项式混沌展开(polynomial chaos expansion, PCE)的随机边界条件下流动与传热问题不确定性量化方法及有限元程序框架.该方法利用Karhunen-Loeve展开表达随机输入边界条件,以及嵌入式多项式混沌展开法表达输出随机场;同时利用谱分解技术将控制方程转化为一组确定性控制方程,并对每个多项式混沌进行求解得到其统计特征.与Monte-Carlo法相比,该方法能够准确高效地预测随机边界条件下流动与传热问题的不确定性特征,同时可以节省大量计算资源.  相似文献   

3.
Systems of Wick stochastic differential equations are studied. Using an estimate on the Wick product we apply Picard iteration to prove a general existence and uniqueness theorem for systems of Wick stochastic differential equations. We also show the solution is stable with respect to perturbations of the noise. This result is used to show that the solution of a linear system of Wick stochastic differential equations driven by smoothed Brownian motion tends to the solution of the corresponding It equation as the smoothed process tends to Brownian motion  相似文献   

4.
We study linear stochastic evolution partial differential equations driven by additive noise. We present a general and flexible framework for representing the infinite dimensional Wiener process, which drives the equation. Since the eigenfunctions and eigenvalues of the covariance operator of the process are usually not available for computations, we propose an expansion in an arbitrary frame. We show how to obtain error estimates when the truncated expansion is used in the equation. For the stochastic heat and wave equations, we combine the truncated expansion with a standard finite element method and derive a priori bounds for the mean square error. Specializing the frame to biorthogonal wavelets in one variable, we show how the hierarchical structure, support and cancelation properties of the primal and dual bases lead to near sparsity and can be used to simplify the simulation of the noise and its update when new terms are added to the expansion.  相似文献   

5.
In this paper we study mathematically and computationally optimal control problems for stochastic elliptic partial differential equations. The control objective is to minimize the expectation of a tracking cost functional, and the control is of the deterministic, distributed type. The main analytical tool is the Wiener-Itô chaos or the Karhunen-Loève expansion. Mathematically, we prove the existence of an optimal solution; we establish the validity of the Lagrange multiplier rule and obtain a stochastic optimality system of equations; we represent the input data in their Wiener-Itô chaos expansions and deduce the deterministic optimality system of equations. Computationally, we approximate the optimality system through the discretizations of the probability space and the spatial space by the finite element method; we also derive error estimates in terms of both types of discretizations.  相似文献   

6.
We consider a class of differential–algebraic equations (DAEs) with index zero in an infinite dimensional Hilbert space. We define a space of consistent initial values, which lead to classical continuously differential solutions for the associated DAE. Moreover, we show that for arbitrary initial values we obtain mild solutions for the associated problem. We discuss the asymptotic behaviour of solutions for both problems. In particular, we provide a characterisation for exponential stability and exponential dichotomies in terms of the spectrum of the associated operator pencil.  相似文献   

7.
The idea of the index of a differential algebraic equation (DAE) (or implicit differential equation) has played a fundamental role in both the analysis of DAEs and the development of numerical algorithms for DAEs. DAEs frequently arise as partial discretizations of partial differential equations (PDEs). In order to relate properties of the PDE to those of the resulting DAE it is necessary to have a concept of the index of a possibly constrained PDE. Using the finite dimensional theory as motivation, this paper will examine what one appropriate analogue is for infinite dimensional systems. A general definition approach will be given motivated by the desire to consider numerical methods. Specific examples illustrating several kinds of behavior will be considered in some detail. It is seen that our definition differs from purely algebraic definitions. Numerical solutions, and simulation difficulties, can be misinterpreted if this index information is missing.  相似文献   

8.
A method is presented for computing convex and concave relaxations of the parametric solutions of nonlinear, semi-explicit, index-one differential-algebraic equations (DAEs). These relaxations are central to the development of a deterministic global optimization algorithm for problems with DAEs embedded. The proposed method uses relaxations of the DAE equations to derive an auxiliary system of DAEs, the solutions of which are proven to provide the desired relaxations. The entire procedure is fully automatable.  相似文献   

9.
Differential algebraic equations (DAEs) define a differential equation on a manifold. A number of ways have been developed to numerically solve some classes of DAEs. Motivated by problems in control theory, numerical simulation, and the use of general purpose modeling environments, recent research has considered the embedding of the DAE solutions of a general DAE into the solutions of an ODE where the added dynamics have special properties. This paper both provides new results on the linear time-varying case and considers the important nonlinear case.  相似文献   

10.
Macutan  Y.O.  Thomas  G. 《Numerical Algorithms》1998,19(1-4):147-157
This paper deals with the computation of the formally integrable systems underlying a given quasi-linear polynomial DAE. We use as stopping condition the criterium of differential stability, which happens to be equivalent to the formal integrability in dimension 1. A symbolic method is developed to compute effectively a finite collection of so-called triangular stable DAEs, whose solutions are precisely all the solutions of the initial system. Besides, this algorithm enables to determine the generic points of a triangular DAE, by checking the non-nullity of a single polynomial. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
This article shows a strong averaging principle for diffusions driven by discontinuous heavy-tailed Lévy noise, which are invariant on the compact horizontal leaves of a foliated manifold subject to small transversal random perturbations. We extend a result for such diffusions with exponential moments and bounded, deterministic perturbations to diffusions with polynomial moments of order \(p\geqslant 2\), perturbed by deterministic and stochastic integrals with unbounded coefficients and polynomial moments. The main argument relies on a result of the dynamical system for each individual jump increments of the corresponding canonical Marcus equation. The example of Lévy rotations on the unit circle subject to perturbations by a planar Lévy-Ornstein-Uhlenbeck process is carried out in detail.  相似文献   

12.
We analyze Runge-Kutta discretizations applied to nonautonomous index 2 differential algebraic equations (DAEs) in semi-explicit form. It is shown that for half-explicit and projected Runge-Kutta methods there is an attractive invariant manifold for the discrete system which is close to the invariant manifold of the DAE. The proof combines reduction techniques to autonomou index 2 differential algebraic equations with some invariant manifold results of Schropp [9]. The results support the favourable behavior of these Runge-Kutta methods applied to index 2 DAEs for t = 0.  相似文献   

13.
This paper intends to develop a new method to obtain the threshold of an impulsive stochastic chemostat model with saturated growth rate in a polluted environment. By using the theory of impulsive differential equations and stochastic differential equations, we obtain conditions for the extinction and the permanence of the microorganisms of the deterministic chemostat model and the stochastic chemostat model. We develop a new numerical computation method for impulsive stochastic differential system to simulate and illustrate our theoretical conclusions. The biological results show that a small stochastic disturbance can cause the microorganism to die out, that is, a permanent deterministic system can go to extinction under the white noise stochastic disturbance. The theoretical method can also be used to explore the threshold of some impulsive stochastic differential equations.  相似文献   

14.
Campbell  S.L.  Hollenbeck  R.  Yeomans  K.  Zhong  Y. 《Numerical Algorithms》1998,19(1-4):73-83
Differential-algebraic equations (DAEs) arise in many ways in many types of problems. In this expository paper we discuss a variety of situations where we have found mixed symbolic-numerical calculations to be essential. The paper is designed to both familiarize the reader with several fundamental DAE ideas and to present some applications. The situations discussed include the analysis of DAEs, the solution of DAEs, and applications which include DAEs. Both successes and challenges will be presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
We consider an equation in a Hilbert space with a random operator represented as a sum of a deterministic, closed, densely defined operator and a Gaussian strong random operator. We represent a solution of an equation with random right-hand side in terms of stochastic derivatives of solutions of an equation with deterministic right-hand side. We consider applications of this representation to the anticipating Cauchy problem for a stochastic partial differential equation.  相似文献   

16.
Summary. In the last few years there has been considerable research on numerical methods for differential algebraic equations (DAEs) where is identically singular. The index provides one measure of the singularity of a DAE. Most of the numerical analysis literature on DAEs to date has dealt with DAEs with indices no larger than three. Even in this case, the systems were often assumed to have a special structure. Recently a numerical method was proposed that could, in principle, be used to integrate general unstructured higher index solvable DAEs. However, that method did not preserve constraints. This paper will discuss a modification of that approach which can be used to design constraint preserving integrators for general nonlinear higher index DAEs. Received August 25, 1993 / Revised version received April 7, 1994  相似文献   

17.
We introduce a new stochastic partial differential equation with second-order elliptic operator in divergence form, having a piecewise constant diffusion coefficient, and driven by a space–time white noise. Such equation could be used in mathematical modeling of diffusion phenomena in medium consisting of two kinds of materials and undergoing stochastic perturbations. We prove the existence of the solution and we present explicit expressions of its covariance and variance functions. Some regularity properties of the solution sample paths are also analyzed.  相似文献   

18.
In this paper, we study a two-species model in the form of a coupled system of nonlinear stochastic differential equations (SDEs) that arises from a variety of applications such as aggregation of biological cells and pedestrian movements. The evolution of each process is influenced by four different forces, namely an external force, a self-interacting force, a cross-interacting force and a stochastic noise where the two interactions depend on the laws of the two processes. We also consider a many-particle system and a (nonlinear) partial differential equation (PDE) system that associate to the model. We prove the wellposedness of the SDEs, the propagation of chaos of the particle system, and the existence and (non)-uniqueness of invariant measures of the PDE system.  相似文献   

19.
We prove a large deviation principle result for solutions of abstract stochastic evolution equations perturbed by small Lévy noise. We use general large deviations theorems of Varadhan and Bryc coupled with the techniques of Feng and Kurtz (2006) [15], viscosity solutions of integro-partial differential equations in Hilbert spaces, and deterministic optimal control methods. The Laplace limit is identified as a viscosity solution of a Hamilton-Jacobi-Bellman equation of an associated control problem. We also establish exponential moment estimates for solutions of stochastic evolution equations driven by Lévy noise. General results are applied to stochastic hyperbolic equations perturbed by subordinated Wiener process.  相似文献   

20.
We define an operator which extends classical differentiation from smooth deterministic functions to certain stochastic processes. Based on this operator, we define a procedure which associates a stochastic analog to standard differential operators and ordinary differential equations. We call this procedure stochastic embedding. By embedding Lagrangian systems, we obtain a stochastic Euler–Lagrange equation which, in the case of natural Lagrangian systems, is called the embedded Newton equation. This equation contains the stochastic Newton equation introduced by Nelson in his dynamical theory of Brownian diffusions. Finally, we consider a diffusion with a gradient drift, a constant diffusion coefficient and having a probability density function. We prove that a necessary condition for this diffusion to solve the embedded Newton equation is that its density be the square of the modulus of a wave function solution of a linear Schrödinger equation. To cite this article: J. Cresson, S. Darses, C. R. Acad. Sci. Paris, Ser. I 342 (2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号