首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
This paper provides a large family of interpolatory stationary subdivision schemes based on radial basis functions (RBFs) which are positive definite or conditionally positive definite. A radial basis function considered in this study has a tension parameter λ>0 such that it provides design flexibility. We prove that for a sufficiently large , the proposed 2L-point (LN) scheme has the same smoothness as the well-known 2L-point Deslauriers-Dubuc scheme, which is based on 2L-1 degree polynomial interpolation. Some numerical examples are presented to illustrate the performance of the new schemes, adapting subdivision rules on bounded intervals in a way of keeping the same smoothness and accuracy of the pre-existing schemes on R. We observe that, with proper tension parameters, the new scheme can alleviate undesirable artifacts near boundaries, which usually appear to interpolatory schemes with irregularly distributed control points.  相似文献   

2.
In this paper we present a family of Non-Uniform Local Interpolatory (NULI) subdivision schemes, derived from compactly supported interpolatory fundamental splines with non-uniform knots (NULIFS). For this spline family, the knot-partition is defined by a sequence of break points and by one additional knot, arbitrarily placed along each knot-interval. The resulting refinement algorithms are linear and turn out to contain a set of edge parameters that, when fixed to a value in the range [0,1], allow us to achieve special shape features by simply moving each auxiliary knot between the break points. Among all the members of this new family of schemes, we will then especially analyze the NULI 4-point refinement. This subdivision scheme has all the fundamental features of the quadratic fundamental spline basis it is originated from, namely compact support, C 1 smoothness, second order polynomials reproduction and approximation order 3. In addition the NULI 4-point subdivision algorithm has the possibility of setting consecutive edge parameters to simulate double and triple knots—that are not considered by the authors of the corresponding spline basis—thus allowing for limit curves with crease vertices, without using an ad hoc mask. Numerical examples and comparisons with other methods will be given to the aim of illustrating the performance of the NULI 4-point scheme in the case of highly non-uniform initial data.  相似文献   

3.
一类新的(2n-1)点二重动态逼近细分   总被引:1,自引:1,他引:0  
张莉  孙燕  檀结庆  时军 《计算数学》2017,39(1):59-69
利用正弦函数构造了一类新的带有形状参数ω的(2n-1)点二重动态逼近细分格式.从理论上分析了随n值变化时这类细分格式的C~k连续性和支集长度;算法的一个特色是随着细分格式中参数ω的取值不同,相应生成的极限曲线的表现张力也有所不同,而且这一类算法所对应的静态算法涵盖了Chaikin,Hormann,Dyn,Daniel和Hassan的算法.文末附出大量数值实例,在给定相同的初始控制顶点,且极限曲线达到同一连续性的前提下和现有几种算法做了比较,数值实例表明这类算法生成的极限曲线更加饱满,表现力更强.  相似文献   

4.
The present article deals with convergence and smoothness analysis of geometric, nonlinear subdivision schemes in the presence of extraordinary points. We discuss when the existence of a proximity condition between a linear scheme and its nonlinear analogue implies convergence of the nonlinear scheme (for dense enough input data). Furthermore, we obtain C 1 smoothness of the nonlinear limit function in the vicinity of an extraordinary point over Reif’s characteristic parametrization. The results apply to the geometric analogues of well-known subdivision schemes such as Doo–Sabin or Catmull–Clark schemes.  相似文献   

5.
A new family of interpolatory stationary subdivision schemes is introduced by using radial basis function interpolation. This work extends earlier studies on interpolatory stationary subdivision schemes in two aspects. First, it provides a wider class of interpolatory schemes; each 2L-point interpolatory scheme has the freedom of choosing a degree (say, m) of polynomial reproducing. Depending on the combination (2L,m), the proposed scheme suggests different subdivision rules. Second, the scheme turns out to be a 2L-point interpolatory scheme with a tension parameter. The conditions for convergence and smoothness are also studied. Dedicated to Prof. Charles A. Micchelli on the occasion of his 60th birthday Mathematics subject classifications (2000) 41A05, 41A25, 41A30, 65D10, 65D17. Byung-Gook Lee: This work was done as a part of Information & Communication fundamental Technology Research Program supported by Ministry of the Information & Communication in Republic of Korea. Jungho Yoon: Corresponding author. Supported by the Korea Science and Engineering Foundation grant (KOSEF R06-2002-012-01001).  相似文献   

6.
In this paper we develop tools for the analysis of net subdivision schemes, schemes which recursively refine nets of bivariate continuous functions defined on grids of lines, and generate denser and denser nets. Sufficient conditions for the convergence of such a sequence of refined nets, and for the smoothness of the limit function, are derived in terms of proximity to a bivariate linear subdivision scheme refining points, under conditions controlling some aspects of the univariate functions of the generated nets. Approximation orders of net subdivision schemes, which are in proximity with positive schemes refining points are also derived. The paper concludes with the construction of a family of blending spline-type net subdivision schemes, and with their analysis by the tools presented in the paper. This family is a new example of net subdivision schemes generating C1 limits with approximation order 2.  相似文献   

7.
In the theory of linear subdivision algorithms, it is well-known that the regularity of a linear subdivision scheme can be elevated by one order (say, from C k to C k+1) by composing it with an averaging step (equivalently, by multiplying to the subdivision mask a(z) a (1 + z) factor. In this paper, we show that the same can be done to nonlinear subdivision schemes: by composing with it any nonlinear, smooth, 2-point averaging step, the lifted nonlinear subdivision scheme has an extra order of regularity than the original scheme. A notable application of this result shows that the classical Lane-Riesenfeld algorithm for uniform B-Spline, when extended to Riemannian manifolds based on geodesic midpoint, produces curves with the same regularity as their linear counterparts. (In particular, curvature does not obstruct the nonlinear Lane-Riesenfeld algorithm to inherit regularity from the linear algorithm.) Our main result uses the recently developed technique of differential proximity conditions.  相似文献   

8.
Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that the most convenient parameter values may be chosen as well as the intervals for insertion.Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control.  相似文献   

9.
We introduce a family of three-point subdivision schemes related to palindromic pairs of matrices of order 2. We apply the Mößner theorem on palindromic matrices to the C 0 convergence of these subdivision schemes. We study the Hölder regularity of their limit functions. The Hölder exponent which is found in the regular case is sharp for most limit functions. In the singular case, the modulus of continuity of the limit functions is of order δlogδ. These results can be used for studying the C 1 convergence of the Merrien family of Hermite subdivision schemes.  相似文献   

10.
In this paper we propose and analyze a new family of nonlinear subdivision schemes which can be considered non-oscillatory versions of the 6-point Deslauries-Dubuc (DD) interpolatory scheme, just as the Power p schemes are considered nonlinear non-oscillatory versions of the 4-point DD interpolatory scheme. Their design principle may be related to that of the Power p schemes and it is based on a weighted analog of the Power p mean. We prove that the new schemes reproduce exactly polynomials of degree three and stay ’close’ to the 6-point DD scheme in smooth regions. In addition, we prove that the first and second difference schemes are well defined for each member of the family, which allows us to give a simple proof of the uniform convergence of these schemes and also to study their stability as in [19, 22]. However our theoretical study of stability is not conclusive and we perform a series of numerical experiments that seem to point out that only a few members of the new family of schemes are stable. On the other hand, extensive numerical testing reveals that, for smooth data, the approximation order and the regularity of the limit function may be similar to that of the 6-point DD scheme and larger than what is obtained with the Power p schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号