首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
求非光滑全局优化问题的区间算法   总被引:2,自引:0,他引:2  
本文通过区间工具和目标函数的特殊导数提出了一个非光滑全局优化问题的区间算法,所提出的方法能给出问题的全部全局极小点及全局极小值,理论分析和数值结构均表明本文方法是有效的。  相似文献   

2.
整数规划的一类填充函数算法   总被引:9,自引:0,他引:9  
填充函数算法是求解连续总体优化问题的一类有效算法。本文改造[1]的填充函数算法使之适于直接求解整数规划问题。首先,给出整数规划问题的离散局部极小解的定义,并设计找离散局部极小解的领域搜索算法。其次,构造整数规划问题的填充函数算法。该方法通过寻找填充函数的离散局部极小解以期找到整数规划问题的比当前离散局部极小解好的解。本文的算法是直接法,数值试验表明算法是有效的。  相似文献   

3.
本文研究约束优化问题的全局优化确定性方法.基于填充函数的定义,具体构造出了一个新的单参数填充函数并做了相关理论证明.结合SQP和BFGS局部极小化算法设计了新的填充函数全局优化算法.数值实验表明,该算法可行有效,具有良好的全局寻优能力.  相似文献   

4.
填充函数法是求解全局优化问题的一个重要的确定性算法,这种方法的关键是构造具有良好性质的填充函数.构造了一个新的求解无约束全局优化问题的填充函数.函数连续可微且只包含一个参数.通过分析该函数的相关性质,设计了相应的算法.数值实验表明该算法简单有效.  相似文献   

5.
填充函数法是求解多变量、多极值函数全局优化问题的有效方法.这种方法的关键是构造填充函数.本文在无Lipschitz连续条件下,对一般无约束最优化问题提出了一类单参数填充函数.讨论了其填充性质,并设计了一个求解约束全局优化问题的填充函数算法,数值实验表明,算法是有效的.  相似文献   

6.
一类非光滑全局优化问题的区间展开方法   总被引:3,自引:0,他引:3  
本文利用区间展开的特点,对一类全局优化问题提出一新的区间求解方法,该方 法能处理多元函数的全局优化问题.数值试验表明提出的方法是可行和有效的.  相似文献   

7.
一种改进的禁忌搜索算法及其在连续全局优化中的应用   总被引:2,自引:1,他引:1  
禁忌搜索算法是一种元启发式的全局优化算法,是局部搜索算法的一种推广,已被成功地应用于许多组合优化问题中。本文针对有界闭区域上的连续函数全局优化问题,提出了一种改进的禁忌搜索算法,并进行了理论分析和数值实验。数值实验表明,对于连续函数全局优化问题的求解该算法是可行有效的,并且结构简单,迭代次数较少,是一种较好的全局启发式优化算法。  相似文献   

8.
对图像与信号处理中遇到的一类齐次多项式优化问题,本文首先借助平移技术将目标函数转化为凸函数,然后结合初始点技术提出了求解该类问题的一个全局优化算法.与求解该类问题的幂方法相比,本文给出的方法不但能在一般情形下保证算法的全局收敛性,而且数值结果表明在多数情况下可以得到问题的一个全局最优值解.  相似文献   

9.
由任意初始点求解离散型约束全局优化问题   总被引:1,自引:1,他引:0  
徐语论  赵德芬  王薇 《数学杂志》2011,31(3):539-546
本文研究了带约束离散型非线性全局优化的求解问题.利用0-1变量提出了一个离散填充函数算法.该算法可由任意初始点出发,不断求得更好的局部极小点,以期得到离散全局最小点.文章同时讨论了所构造的填充函数的性质,给出了数值试验结果.  相似文献   

10.
胡铨  王薇 《运筹学学报》2016,20(3):57-67
提出一个基于滤子技术的填充函数算法, 用于求解带箱式约束的非凸全局优化问题. 填充函数算法是求解全局优化问题的有效方法之一, 而滤子技术以其良好的数值效果广泛应用于局部优化算法中. 为优化填充函数方法, 应用滤子来监控迭代过程. 首先给出一个新的填充函数并讨论了其特性, 在此基础上提出了理论算法及算法性质. 最后列出数值实验结果以说明算法的有效性.  相似文献   

11.
A new method for continuous global minimization problems, acronymed SCM, is introduced. This method gives a simple transformation to convert the objective function to an auxiliary function with gradually fewer local minimizers. All Local minimizers except a prefixed one of the auxiliary function are in the region where the function value of the objective function is lower than its current minimal value. Based on this method, an algorithm is designed which uses a local optimization method to minimize the auxiliary function to find a local minimizer at which the value of the objective function is lower than its current minimal value. The algorithm converges asymptotically with probability one to a global minimizer of the objective function. Numerical experiments on a set of standard test problems with several problems' dimensions up to 50 show that the algorithm is very efficient compared with other global optimization methods.  相似文献   

12.
This paper presents a new method for solving global optimization problems. We use a local technique based on the notion of discrete gradients for finding a cone of descent directions and then we use a global cutting angle algorithm for finding global minimum within the intersection of the cone and the feasible region. We present results of numerical experiments with well-known test problems and with the so-called cluster function. These results confirm that the proposed algorithms allows one to find a global minimizer or at least a deep local minimizer of a function with a huge amount of shallow local minima.  相似文献   

13.
The filled function method is an effective approach to find a global minimizer for a general class of nonsmooth programming problems with a closed bounded domain. This paper gives a new definition for the filled function, which overcomes some drawbacks of the previous definition. It proposes a two-parameter filled function and a one-parameter filled function to improve the efficiency of numerical computation. Based on these analyses, two corresponding filled function algorithms are presented. They are global optimization methods which modify the objective function as a filled function, and which find a better local minimizer gradually by optimizing the filled function constructed on the minimizer previously found. Numerical results obtained indicate the efficiency and reliability of the proposed filled function methods.  相似文献   

14.
Global Optimization by Multilevel Coordinate Search   总被引:3,自引:0,他引:3  
Inspired by a method by Jones et al. (1993), we present a global optimization algorithm based on multilevel coordinate search. It is guaranteed to converge if the function is continuous in the neighborhood of a global minimizer. By starting a local search from certain good points, an improved convergence result is obtained. We discuss implementation details and give some numerical results.  相似文献   

15.
A filled function method for constrained global optimization   总被引:1,自引:0,他引:1  
In this paper, a filled function method for solving constrained global optimization problems is proposed. A filled function is proposed for escaping the current local minimizer of a constrained global optimization problem by combining the idea of filled function in unconstrained global optimization and the idea of penalty function in constrained optimization. Then a filled function method for obtaining a global minimizer or an approximate global minimizer of the constrained global optimization problem is presented. Some numerical results demonstrate the efficiency of this global optimization method for solving constrained global optimization problems.  相似文献   

16.
A new method is proposed for solving box constrained global optimization problems. The basic idea of the method is described as follows: Constructing a so-called cut-peak function and a choice function for each present minimizer, the original problem of finding a global solution is converted into an auxiliary minimization problem of finding local minimizers of the choice function, whose objective function values are smaller than the previous ones. For a local minimum solution of auxiliary problems this procedure is repeated until no new minimizer with a smaller objective function value could be found for the last minimizer. Construction of auxiliary problems and choice of parameters are relatively simple, so the algorithm is relatively easy to implement, and the results of the numerical tests are satisfactory compared to other methods.  相似文献   

17.
The filled function method is considered as an efficient approach to solve the global optimization problems. In this paper, a new filled function method is proposed. Its main idea is as follows: a new continuously differentiable filled function with only one parameter is constructed for unconstrained global optimization when a minimizer of the objective function is found, then a minimizer of the filled function will be found in a lower basin of the objective function, thereafter, a better minimizer of the objective function will be found. The above process is repeated until the global optimal solution is found. The numerical experiments show the efficiency of the proposed filled function method.  相似文献   

18.
A novel method, entitled the discrete global descent method, is developed in this paper to solve discrete global optimization problems and nonlinear integer programming problems. This method moves from one discrete minimizer of the objective function f to another better one at each iteration with the help of an auxiliary function, entitled the discrete global descent function. The discrete global descent function guarantees that its discrete minimizers coincide with the better discrete minimizers of f under some standard assumptions. This property also ensures that a better discrete minimizer of f can be found by some classical local search methods. Numerical experiments on several test problems with up to 100 integer variables and up to 1.38 × 10104 feasible points have demonstrated the applicability and efficiency of the proposed method.  相似文献   

19.
We present a new strategy for the constrained global optimization of expensive black box functions using response surface models. A response surface model is simply a multivariate approximation of a continuous black box function which is used as a surrogate model for optimization in situations where function evaluations are computationally expensive. Prior global optimization methods that utilize response surface models were limited to box-constrained problems, but the new method can easily incorporate general nonlinear constraints. In the proposed method, which we refer to as the Constrained Optimization using Response Surfaces (CORS) Method, the next point for costly function evaluation is chosen to be the one that minimizes the current response surface model subject to the given constraints and to additional constraints that the point be of some distance from previously evaluated points. The distance requirement is allowed to cycle, starting from a high value (global search) and ending with a low value (local search). The purpose of the constraint is to drive the method towards unexplored regions of the domain and to prevent the premature convergence of the method to some point which may not even be a local minimizer of the black box function. The new method can be shown to converge to the global minimizer of any continuous function on a compact set regardless of the response surface model that is used. Finally, we considered two particular implementations of the CORS method which utilize a radial basis function model (CORS-RBF) and applied it on the box-constrained Dixon–Szegö test functions and on a simple nonlinearly constrained test function. The results indicate that the CORS-RBF algorithms are competitive with existing global optimization algorithms for costly functions on the box-constrained test problems. The results also show that the CORS-RBF algorithms are better than other algorithms for constrained global optimization on the nonlinearly constrained test problem.  相似文献   

20.
In this paper we consider a global optimization method for space trajectory design problems. The method, which actually aims at finding not only the global minimizer but a whole set of low-lying local minimizers (corresponding to a set of different design options), is based on a domain decomposition technique where each subdomain is evaluated through a procedure based on the evolution of a population of agents. The method is applied to two space trajectory design problems and compared with existing deterministic and stochastic global optimization methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号