首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对满足周期边界条件的二维非线性Schrödinger方程,运用中心差分对该方程进行空间离散, 得到一个有限维Hamilton系统,然后用隐式Euler中点格式进行时间离散得到其辛格式. 针对该方程的多辛形式, 运用有限体积法离散,得到一种直平行六面体上的中点型多辛格式. 用所构造的辛与多辛格式对二维非线性Schrödinger方程的平面波解和奇异解进行数值模拟,结果验证了所构 造格式的有效性. 最后, 根据计算结果,对两种格式进行了分析和比较.    相似文献   

2.
张胜良 《应用数学》2021,34(2):457-462
基于径向基逼近理论,本文为KdV方程构造了一个无网格辛算法.首先借助径向基空间离散Hamilton函数以及Poisson括号,把KdV方程转化成一个有限维的Hamilton系统.然后用辛积分子离散有限维系统,得到辛算法.文章进一步讨论了所构造辛算法的收敛性和误差界.数值例子验证了理论分析.  相似文献   

3.
带乘性噪声的空间分数阶随机非线性Schrödinger方程是一类重要的方程,可应用于描述开放非局部量子系统的演化过程.该方程为一个无穷维分数阶随机Hamilton系统,且具有广义多辛结构和质量守恒的性质.针对该方程的广义多辛形式,在空间上采用拟谱方法离散分数阶微分算子,在时间上则采用隐式中点格式,构造出一类保持全局质量的广义多辛格式.对行波解和平面波解等进行数值模拟,结果验证了所构造格式的有效性和保结构性质,时间均方收敛阶约在0.5到1之间.  相似文献   

4.
广义Boussinesq方程的多辛方法   总被引:1,自引:1,他引:0  
广义Boussinesq方程作为一类重要的非线性方程有着许多有趣的性质,基于Hamilton空间体系的多辛理论研究了广义Boussinesq方程的数值解法,构造了一种等价于多辛Box格式的新隐式多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律.对广义Boussinesq方程孤子解的数值模拟结果表明,该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

5.
非线性发展方程由于具有多种形式的解析解而吸引着众多的研究者,借助多辛保结构理论研究了Sine-Gordon方程的多辛算法.利用Hamilton变分原理,构造出了Sine-Gordon方程的多辛格式;采用显辛离散方法得到了leap-frog多辛离散格式,该格式满足多辛守恒律;数值结果表明leap-frog多辛离散格式能够精确地模拟Sine-Gordon方程的孤子解和周期解,模拟结果证实了该离散格式具有良好的数值稳定性.  相似文献   

6.
Landau-Ginzburg-Higgs方程的多辛Runge-Kutta方法   总被引:1,自引:0,他引:1  
非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

7.
基于Hamilton变分原理和Bridges意义下的多辛积分理论,提出了保持无穷维Hamilton系统稳态解能流通量和动量通量的保结构分析方法.针对复杂的无穷维Hamilton系统的多辛对称形式,首先讨论了其稳态解所满足的对称形式的守恒律问题;随后,以一个典型的无穷维Hamilton系统——Zufiria方程为例,采用box离散格式,模拟了其稳态解,并验证了算法的保结构性能.研究结果显示:采用保结构算法能够较好地模拟无穷维Hamilton系统的稳态解,并保持了无穷维Hamilton系统稳态解的能流通量和动量通量两个重要力学参量.这一研究结果将为复杂无穷维Hamilton系统稳态解的数值分析提供新的途径.  相似文献   

8.
DGH方程作为一类重要的非线性水波方程有着许多广泛的应用前景.基于Hamilton系统的多辛理论研究了一类强色散DGH方程的数值解法,利用多辛普雷斯曼方法构造了一种典型的半隐式的多辛格式.分析了该格式的局部能量和动量守恒律误差,并给出了数值算例.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

9.
1引言 有限体积方法[l]一l’]作为守恒型的离散技术,被广泛应用于工程计算领域.文【2,3} 基于分片常数和分片常向量函数空间,对二维驻定对流扩散方程提出了一类非协调混合 有限体积(Covolume)格式,证明了格式具有。(hl/2)收敛精度.但该格式要求对偶剖分 比较规则,即采用重  相似文献   

10.
王俊杰  王连堂 《数学杂志》2014,34(6):1116-1124
本文研究一类非线性ZK-BBM方程的初值问题.利用Hamilton系统的多辛Preissmann方法,获得ZK-BBM方程初值问题的数值结果,数值结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

11.
In this paper, we present two classes of symplectic schemes with high order accuracy for solving four-order rod vibration equation utt uxxxx=0 via the third type generating function method. First, the equation of four order rod vibration is written into the canonical Hamilton system; second, overcoming successfully the essential difficult on the calculus of high order variations derivative, we get the semi-discretization with arbitrary order of accuracy in time direction for the PDEs by the third type generating function method. Furthermore the discretization of the related modified equation of original equation is obtained. Finally, arbitrary order accuracy symplectic schemes are obtained. Numerical results are also presented to show the effectiveness of the scheme, high order accuracy and properties of excellent long-time numerical behavior.  相似文献   

12.
This paper is concerned with the stability of numerical processes that arise after semi-discretization of linear parabolic equations wit a delay term. These numerical processes are obtained by applying step-by-step methods to the resulting systems of ordinary delay differential equations. Under the assumption that the semi-discretization matrix is normal we establish upper bounds for the growth of errors in the numerical processes under consideration, and thus arrive at conclusions about their stability. More detailed upper bounds are obtained for -methods under the additional assumption that the eigenvalues of the semi-discretization matrix are real and negative. In particular, we derive contractivity properties in this case. Contractivity properties are also obtained for the -methods applied to the one-dimensional test equation with real coefficients and a delay term. Numerical experiments confirming the derived contractivity properties for parabolic equations with a delay term are presented.  相似文献   

13.
The process of semi-discretization and waveform relaxation are applied to general nonlinear parabolic functional differential equations. Two new theorems are presented, which extend and improve some of the classical results. The first of these theorems gives an upper bound for the norm of the error of finite difference semi-discretization. This upper bound is sharper than the classical error bound. The second of these theorems gives an upper bound for the norm of the error, which is caused by both semi-discretization and waveform relaxation. The focus in the paper is on estimating this error directly without using the upper bound for the error, which is caused by the process of semi-discretization and the upper bound for the error, which is caused by the waveform relaxation method. Such estimating gives sharper error bound than the bound, which is obtained by estimating both errors separately.  相似文献   

14.
In order to inherit numerically the ergodicity of the damped stochastic nonlinear Schrödinger equation with additive noise, we propose a fully discrete scheme, whose spatial direction is based on spectral Galerkin method and temporal direction is based on a modification of the implicit Euler scheme. We not only prove the unique ergodicity of the numerical solutions of both spatial semi-discretization and full discretization, but also present error estimations on invariant measures, which gives order 2 in spatial direction and order \({\frac 12}\) in temporal direction under certain hypotheses.  相似文献   

15.
A one-dimensional free surface problem is considered. It consists in Burgers’ equation with an additional diffusion term on a moving interval. The well-posedness of the problem is investigated and existence and uniqueness results are obtained locally in time. A semi-discretization in space with a piecewise linear finite element method is considered. A priori and a posteriori error estimates are given for the semi-discretization in space. A time splitting scheme allows to obtain numerical results in agreement with the theoretical investigations.Supported by the Swiss National Science Foundation  相似文献   

16.
We introduce a time semi-discretization of a damped wave equation by a SAV scheme with second order accuracy. The energy dissipation law is shown to hold without any restriction on the time step. We prove that any sequence generated by the scheme converges to a steady state (up to a subsequence). We notice that the steady state equation associated to the SAV scheme is a modified version of the steady state equation associated to the damped wave equation. We show that a similar result holds for a SAV fully discrete version of the Cahn-Hilliard equation and we compare numerically the two steady state equations.  相似文献   

17.
The main aim of this paper is to validate and to solve a model for consolidation of an elastic saturated soil with incompressible fluid. Firstly, we prove the existence and uniqueness of the solution of the variational problem corresponding to an initial and boundary value problem (IBVP): a special case of the Biot’s ‘consolidation of clay’ model (where the applied forces depend on time). Secondly, we prove the stability of the method as well as the estimation of the error by using semi-discretization in time. Finally, we then solved this one by the finite element method (FEM) employing repeated fixed point techniques in order to obtain the results for displacement and pore water pressure. The pore fluid is considered incompressible. The results of the numerical experiments are compared with analytical solutions and, in cases where such solutions do not exist, with experimental data.  相似文献   

18.
In this article we study the stability of explicit finite difference discretization of advection–diffusion equations (ADE) with arbitrary order of accuracy in the context of method of lines. The analysis first focuses on the stability of the system of ordinary differential equations that is obtained by discretizing the ADE in space and then extends to fully discretized methods in combination with explicit Runge–Kutta methods. In particular, we prove that all stable semi-discretization of the ADE leads to a conditionally stable fully discretized method as long as the time-integrator is at least first-order accurate, whereas high-order spatial discretization of the advection equation cannot yield a stable method if the temporal order is too low. In the second half of the article, the analysis and the stability results are extended to a partially dissipative wave system, which serves as a model for common practice in many fluid mechanics applications that incorporate a viscous stress in the momentum equation but no heat dissipation in the energy equation. Finally, the major theoretical predictions are verified by numerical examples.  相似文献   

19.
In this paper we consider the semi-discretization difference method for the system of Zakharov equations. Under certain conditions, the convergence, error stimates and stability of the given difference scheme are studied.This project is supported by the National Natural Science Foundation of China.  相似文献   

20.
In our paper we investigate the unbiased movement of the unicellular eukaryotic ciliate Tetrahymena Pyriformis. We use a time-delayed version of the previously known model to describe the specific movement of this species. With the help of semi-discretization, we state analytic results for the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号