首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

2.
Abstract

Markov chain Monte Carlo (MCMC) methods are currently enjoying a surge of interest within the statistical community. The goal of this work is to formalize and support two distinct adaptive strategies that typically accelerate the convergence of an MCMC algorithm. One approach is through resampling; the other incorporates adaptive switching of the transition kernel. Support is both by analytic arguments and simulation study. Application is envisioned in low-dimensional but nontrivial problems. Two pathological illustrations are presented. Connections with reparameterization are discussed as well as possible difficulties with infinitely often adaptation.  相似文献   

3.
Abstract

Many Bayesian analyses use Markov chain Monte Carlo (MCMC) techniques. MCMC techniques work fastest (per iteration) when the prior distribution of the parameters is chosen conveniently, such as a conjugate prior. However, this is sometimes at odds with the prior desired by the investigator. We describe two motivating examples where nonconjugate priors are preferred. One is a Dirichlet process where it is difficult to implement alternative, nonconjugate priors. We develop a method that allows computation to be done with a convenient prior but adjusts the equilibrium distribution of the Markov chain to be the posterior distribution from the desired prior. In addition to allowing more freedom in choosing prior distributions, the method enables the investigator to perform quick sensitivity analyses, even in nonparametric settings.  相似文献   

4.
We presenta Bayesian approach to model calibration when evaluation of the model is computationally expensive. Here, calibration is a nonlinear regression problem: given a data vector Y corresponding to the regression model f(β), find plausible values of β. As an intermediate step, Y and f are embedded into a statistical model allowing transformation and dependence. Typically, this problem is solved by sampling from the posterior distribution of β given Y using MCMC. To reduce computational cost, we limit evaluation of f to a small number of points chosen on a high posterior density region found by optimization.Then,we approximate the logarithm of the posterior density using radial basis functions and use the resulting cheap-to-evaluate surface in MCMC.We illustrate our approach on simulated data for a pollutant diffusion problem and study the frequentist coverage properties of credible intervals. Our experiments indicate that our method can produce results similar to those when the true “expensive” posterior density is sampled by MCMC while reducing computational costs by well over an order of magnitude.  相似文献   

5.
Abstract

All known robust location and scale estimators with high breakdown point for multivariate samples are very expensive to compute. In practice, this computation has to be carried out using an approximate subsampling procedure. In this article we describe an alternative subsampling scheme, applicable to both the Stahel-Donoho estimator and the minimum volume ellipsoid estimator, with the property that the number of subsamples required can be substantially reduced with respect to the standard subsampling procedures used in both cases. We also discuss some bias and variability properties of the estimator obtained from the proposed subsampling process.  相似文献   

6.
Implementations of the Monte Carlo EM Algorithm   总被引:1,自引:0,他引:1  
The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where the expectation in the E-step is computed numerically through Monte Carlo simulations. The most exible and generally applicable approach to obtaining a Monte Carlo sample in each iteration of an MCEM algorithm is through Markov chain Monte Carlo (MCMC) routines such as the Gibbs and Metropolis–Hastings samplers. Although MCMC estimation presents a tractable solution to problems where the E-step is not available in closed form, two issues arise when implementing this MCEM routine: (1) how do we minimize the computational cost in obtaining an MCMC sample? and (2) how do we choose the Monte Carlo sample size? We address the first question through an application of importance sampling whereby samples drawn during previous EM iterations are recycled rather than running an MCMC sampler each MCEM iteration. The second question is addressed through an application of regenerative simulation. We obtain approximate independent and identical samples by subsampling the generated MCMC sample during different renewal periods. Standard central limit theorems may thus be used to gauge Monte Carlo error. In particular, we apply an automated rule for increasing the Monte Carlo sample size when the Monte Carlo error overwhelms the EM estimate at any given iteration. We illustrate our MCEM algorithm through analyses of two datasets fit by generalized linear mixed models. As a part of these applications, we demonstrate the improvement in computational cost and efficiency of our routine over alternative MCEM strategies.  相似文献   

7.
We present a Markov chain Monte Carlo (MCMC) method for generating Markov chains using Markov bases for conditional independence models for a four-way contingency table. We then describe a Markov basis characterized by Markov properties associated with a given conditional independence model and show how to use the Markov basis to generate random tables of a Markov chain. The estimates of exact p-values can be obtained from random tables generated by the MCMC method. Numerical experiments examine the performance of the proposed MCMC method in comparison with the χ 2 approximation using large sparse contingency tables.  相似文献   

8.
It is common to subsample Markov chain output to reduce the storage burden. Geyer shows that discarding k ? 1 out of every k observations will not improve statistical efficiency, as quantified through variance in a given computational budget. That observation is often taken to mean that thinning Markov chain Monte Carlo (MCMC) output cannot improve statistical efficiency. Here, we suppose that it costs one unit of time to advance a Markov chain and then θ > 0 units of time to compute a sampled quantity of interest. For a thinned process, that cost θ is incurred less often, so it can be advanced through more stages. Here, we provide examples to show that thinning will improve statistical efficiency if θ is large and the sample autocorrelations decay slowly enough. If the lag ? ? 1 autocorrelations of a scalar measurement satisfy ρ? > ρ? + 1 > 0, then there is always a θ < ∞ at which thinning becomes more efficient for averages of that scalar. Many sample autocorrelation functions resemble first order AR(1) processes with ρ? = ρ|?| for some ? 1 < ρ < 1. For an AR(1) process, it is possible to compute the most efficient subsampling frequency k. The optimal k grows rapidly as ρ increases toward 1. The resulting efficiency gain depends primarily on θ, not ρ. Taking k = 1 (no thinning) is optimal when ρ ? 0. For ρ > 0, it is optimal if and only if θ ? (1 ? ρ)2/(2ρ). This efficiency gain never exceeds 1 + θ. This article also gives efficiency bounds for autocorrelations bounded between those of two AR(1) processes. Supplementary materials for this article are available online.  相似文献   

9.
Abstract

The “leapfrog” hybrid Monte Carlo algorithm is a simple and effective MCMC method for fitting Bayesian generalized linear models with canonical link. The algorithm leads to large trajectories over the posterior and a rapidly mixing Markov chain, having superior performance over conventional methods in difficult problems like logistic regression with quasicomplete separation. This method offers a very attractive solution to this common problem, providing a method for identifying datasets that are quasicomplete separated, and for identifying the covariates that are at the root of the problem. The method is also quite successful in fitting generalized linear models in which the link function is extended to include a feedforward neural network. With a large number of hidden units, however, or when the dataset becomes large, the computations required in calculating the gradient in each trajectory can become very demanding. In this case, it is best to mix the algorithm with multivariate random walk Metropolis—Hastings. However, this entails very little additional programming work.  相似文献   

10.
Markov chain Monte Carlo (MCMC) methods have been used in many fields (physics, chemistry, biology, and computer science) for simulation, inference, and optimization. In many applications, Markov chains are simulated for sampling from target probabilities π(X) defined on graphs G. The graph vertices represent elements of the system, the edges represent spatial relationships, while X is a vector of variables on the vertices which often take discrete values called labels or colors. Designing efficient Markov chains is a challenging task when the variables are strongly coupled. Because of this, methods such as the single-site Gibbs sampler often experience suboptimal performance. A well-celebrated algorithm, the Swendsen–Wang (SW) method, can address the coupling problem. It clusters the vertices as connected components after turning off some edges probabilistically, and changes the color of one cluster as a whole. It is known to mix rapidly under certain conditions. Unfortunately, the SW method has limited applicability and slows down in the presence of “external fields;” for example, likelihoods in Bayesian inference. In this article, we present a general cluster algorithm that extends the SW algorithm to general Bayesian inference on graphs. We focus on image analysis problems where the graph sizes are in the order of 103–106 with small connectivity. The edge probabilities for clustering are computed using discriminative probabilities from data. We design versions of the algorithm to work on multi grid and multilevel graphs, and present applications to two typical problems in image analysis, namely image segmentation and motion analysis. In our experiments, the algorithm is at least two orders of magnitude faster (in CPU time) than the single-site Gibbs sampler.  相似文献   

11.
The Hybrid Monte Carlo (HMC) algorithm provides a framework for sampling from complex, high-dimensional target distributions. In contrast with standard Markov chain Monte Carlo (MCMC) algorithms, it generates nonlocal, nonsymmetric moves in the state space, alleviating random walk type behaviour for the simulated trajectories. However, similarly to algorithms based on random walk or Langevin proposals, the number of steps required to explore the target distribution typically grows with the dimension of the state space. We define a generalized HMC algorithm which overcomes this problem for target measures arising as finite-dimensional approximations of measures π which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert space. The key idea is to construct an MCMC method which is well defined on the Hilbert space itself.We successively address the following issues in the infinite-dimensional setting of a Hilbert space: (i) construction of a probability measure Π in an enlarged phase space having the target π as a marginal, together with a Hamiltonian flow that preserves Π; (ii) development of a suitable geometric numerical integrator for the Hamiltonian flow; and (iii) derivation of an accept/reject rule to ensure preservation of Π when using the above numerical integrator instead of the actual Hamiltonian flow. Experiments are reported that compare the new algorithm with standard HMC and with a version of the Langevin MCMC method defined on a Hilbert space.  相似文献   

12.
Mixing time quantifies the convergence speed of a Markov chain to the stationary distribution. It is an important quantity related to the performance of MCMC sampling. It is known that the mixing time of a reversible chain can be significantly improved by lifting, resulting in an irreversible chain, while changing the topology of the chain. We supplement this result by showing that if the connectivity graph of a Markov chain is a cycle, then there is an Ω(n2) lower bound for the mixing time. This is the same order of magnitude that is known for reversible chains on the cycle.  相似文献   

13.
Label switching is a well-known phenomenon that occurs in MCMC outputs targeting the parameters’ posterior distribution of many latent variable models. Although its appearence is necessary for the convergence of the simulated Markov chain, it turns out to be a problem in the estimation procedure. In a recent paper, Papastamoulis and Iliopoulos (J Comput Graph Stat 19:313–331, 2010) introduced the Equivalence Classes Representatives (ECR) algorithm as a solution of this problem in the context of finite mixtures of distributions. In this paper, label switching is considered under a general missing data model framework that includes as special cases finite mixtures, hidden Markov models, and Markov random fields. The use of ECR algorithm is extended to this general framework and is shown that the relabelled sequence which it produces converges to its target distribution at the same rate as the Random Permutation Sampler of Frühwirth-Schnatter (2001) and that both converge at least as fast as the Markov chain generated by the original MCMC output.  相似文献   

14.
A key result underlying the theory of MCMC is that any η-irreducible Markov chain having a transition density with respect to η and possessing a stationary distribution π is automatically positive Harris recurrent. This paper provides a short self-contained proof of this fact using the ergodic theorem in its standard form as the most advanced tool.  相似文献   

15.
What does regressing Y on X versus regressing X on Y have to do with Markov chain Monte Carlo (MCMC)? It turns out that many strategies for speeding up data augmentation (DA) type algorithms can be understood as fostering independence or “de-correlation” between a regression function and the corresponding residual, thereby reducing or even eliminating dependence among MCMC iterates. There are two general classes of algorithms, those corresponding to regressing parameters on augmented data/auxiliary variables and those that operate the other way around. The interweaving strategy of Yu and Meng provides a general recipe to automatically take advantage of both, and it is the existence of two different types of residuals that makes the interweaving strategy seemingly magical in some cases and promising in general. The concept of residuals—which depends on actual data—also highlights the potential for substantial improvements when DA schemes are allowed to depend on the observed data. At the same time, there is an intriguing phase transition type of phenomenon regarding choosing (partially) residual augmentation schemes, reminding us once more of the prevailing issue of trade-off between robustness and efficiency. This article reports on these latest theoretical investigations (using a class of normal/independence models) and empirical findings (using a posterior sampling for a probit regression) in the search for effective residual augmentations—and ultimately more MCMC algorithms—that meet the 3-S criterion: simple, stable, and speedy. Supplementary materials for the article are available online.  相似文献   

16.
Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π1 is replaced by a Harris ergodic Markov chain with invariant density π1, then the resulting estimator remains strongly consistent. There is a price to be paid, however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this article, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general setup, where we assume that Markov chain samples from several probability densities, π1, …, πk, are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effect models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection.  相似文献   

17.
It is increasingly common to be faced with longitudinal or multi-level data sets that have large numbers of predictors and/or a large sample size. Current methods of fitting and inference for mixed effects models tend to perform poorly in such settings. When there are many variables, it is appealing to allow uncertainty in subset selection and to obtain a sparse characterization of the data. Bayesian methods are available to address these goals using Markov chain Monte Carlo (MCMC), but MCMC is very computationally expensive and can be infeasible in large p and/or large n problems. As a fast approximate Bayes solution, we recommend a novel approximation to the posterior relying on variational methods. Variational methods are used to approximate the posterior of the parameters in a decomposition of the variance components, with priors chosen to obtain a sparse solution that allows selection of random effects. The method is evaluated through a simulation study, and applied to an epidemiological application.  相似文献   

18.
Multicanonical MCMC (Multicanonical Markov Chain Monte Carlo; Multicanonical Monte Carlo) is discussed as a method of rare event sampling. Starting from a review of the generic framework of importance sampling, multicanonical MCMC is introduced, followed by applications in random matrices, random graphs, and chaotic dynamical systems. Replica exchange MCMC (also known as parallel tempering or Metropolis-coupled MCMC) is also explained as an alternative to multicanonical MCMC. In the last section, multicanonical MCMC is applied to data surrogation; a successful implementation in surrogating time series is shown. In the appendix, calculation of averages and normalizing constant in an exponential family, phase coexistence, simulated tempering, parallelization, and multivariate extensions are discussed.  相似文献   

19.
Exact conditional goodness-of-fit tests for discrete exponential family models can be conducted via Monte Carlo estimation of p values by sampling from the conditional distribution of multiway contingency tables. The two most popular methods for such sampling are Markov chain Monte Carlo (MCMC) and sequential importance sampling (SIS). In this work we consider various ways to hybridize the two schemes and propose one standout strategy as a good general purpose method for conducting inference. The proposed method runs many parallel chains initialized at SIS samples across the fiber. When a Markov basis is unavailable, the proposed scheme uses a lattice basis with intermittent SIS proposals to guarantee irreducibility and asymptotic unbiasedness. The scheme alleviates many of the challenges faced by the MCMC and SIS schemes individually while largely retaining their strengths. It also provides diagnostics that guide and lend credibility to the procedure. Simulations demonstrate the viability of the approach.  相似文献   

20.

K-Nearest Neighbours (k-NN) is a popular classification and regression algorithm, yet one of its main limitations is the difficulty in choosing the number of neighbours. We present a Bayesian algorithm to compute the posterior probability distribution for k given a target point within a data-set, efficiently and without the use of Markov Chain Monte Carlo (MCMC) methods or simulation—alongside an exact solution for distributions within the exponential family. The central idea is that data points around our target are generated by the same probability distribution, extending outwards over the appropriate, though unknown, number of neighbours. Once the data is projected onto a distance metric of choice, we can transform the choice of k into a change-point detection problem, for which there is an efficient solution: we recursively compute the probability of the last change-point as we move towards our target, and thus de facto compute the posterior probability distribution over k. Applying this approach to both a classification and a regression UCI data-sets, we compare favourably and, most importantly, by removing the need for simulation, we are able to compute the posterior probability of k exactly and rapidly. As an example, the computational time for the Ripley data-set is a few milliseconds compared to a few hours when using a MCMC approach.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号