共查询到10条相似文献,搜索用时 46 毫秒
1.
Vladimir Derkach Seppo Hassi 《Proceedings of the American Mathematical Society》2003,131(12):3795-3806
A new model for generalized Nevanlinna functions will be presented. It involves Bezoutians and companion operators associated with certain polynomials determined by the generalized zeros and poles of . The model is obtained by coupling two operator models and expressed by means of abstract boundary mappings and the corresponding Weyl functions.
2.
Seppo Hassi Adrian Sandovici Henk de Snoo Henrik Winkler 《Proceedings of the American Mathematical Society》2007,135(10):3193-3204
The sum of two nonnegative selfadjoint relations (multi-valued operators) and is a nonnegative relation. The class of all extremal extensions of the sum is characterized as products of relations via an auxiliary Hilbert space associated with and . The so-called form sum extension of is a nonnegative selfadjoint extension, which is constructed via a closed quadratic form associated with and . Its connection to the class of extremal extensions is investigated and a criterion for its extremality is established, involving a nontrivial dependence on and .
3.
Seppo Hassi Michael Kaltenbä ck Henk de Snoo 《Proceedings of the American Mathematical Society》1997,125(9):2681-2692
For a class of closed symmetric operators with defect numbers it is possible to define a generalization of the Friedrichs extension, which coincides with the usual Friedrichs extension when is semibounded. In this paper we provide an operator-theoretic interpretation of this class of symmetric operators. Moreover, we prove that a selfadjoint operator is semibounded if and only if each one-dimensional restriction of has a generalized Friedrichs extension.
4.
Let S be a closed symmetric operator with defect numbers (1,1) in a Hilbert space ?? and let A be a selfadjoint operator extension of S in ??. Then S is necessarily a graph restriction of A and the selfadjoint extensions of S can be considered as graph perturbations of A, cf. [8]. Only when S is not densely defined and, in particular, when S is bounded, 5 is given by a domain restriction of A and the graph perturbations reduce to rank one perturbations in the sense of [23]. This happens precisely when the Q - function of S and A belongs to the subclass No of Nevanlinna functions. In this paper we show that by going beyond the Hilbert space ?? the graph perturbations can be interpreted as compressions of rank one perturbations. We present two points of view: either the Hilbert space ?? is given a one-dimensional extension, or the use of Hilbert space triplets associated with A is invoked. If the Q - function of S and A belongs to the subclass N1 of Nevanlinna functions, then it is convenient to describe the selfadjoint extensions of S including its generalized Friedrichs extension (see [6]) by interpolating the original triplet, cf. [5]. For the case when A is semibounded, see also [4]. We prove some invariance properties, which imply that such an interpolation is independent of the (nonexceptional) extension. 相似文献
5.
Alexander E. Richman 《Proceedings of the American Mathematical Society》2003,131(3):889-895
In 1996, C. Cowen and B. MacCluer studied a class of maps on that they called linear fractional maps. Using the tools of Krein spaces, it can be shown that a linear fractional map is a self-map of the ball if and only if an associated matrix is a multiple of a Krein contraction. In this paper, we extend this result by specifying this multiple in terms of eigenvalues and eigenvectors of this matrix, creating an easily verified condition in almost all cases. In the remaining cases, the best possible results depending on fixed point and boundary behavior are given.
6.
7.
Let N1 denote the class of generalized Nevanlinna functions with one negative square and let N1, 0 be the subclass of functions Q(z)∈N1 with the additional properties limy→∞ Q(iy)/y=0 and lim supy→∞ y |Im Q(iy)|<∞. These classes form an analytic framework for studying (generalized) rank one perturbations A(τ)=A+τ[·, ω] ω in a Pontryagin space setting. Many functions appearing in quantum mechanical models of point interactions either belong to the subclass N1, 0 or can be associated with the corresponding generalized Friedrichs extension. In this paper a spectral theoretical analysis of the perturbations A(τ) and the associated Friedrichs extension is carried out. Many results, such as the explicit characterizations for the critical eigenvalues of the perturbations A(τ), are based on a recent factorization result for generalized Nevanlinna functions. 相似文献
8.
New classes of generalized Nevanlinna functions, which under multiplication with an arbitrary fixed symmetric rational function remain generalized Nevanlinna functions, are introduced. Characterizations for these classes of functions are established by connecting the canonical factorizations of the product function and the original generalized Nevanlinna function in a constructive manner. Also, a detailed functional analytic treatment of these classes of functions is carried out by investigating the connection between the realizations of the product function and the original function. The operator theoretic treatment of these realizations is based on the notions of rigged spaces, boundary triplets, and associated Weyl functions. 相似文献
9.
Jussi Behrndt 《Mathematische Nachrichten》2009,282(5):659-689
We investigate some classes of eigenvalue dependent boundary value problems of the form where A ? A+ is a symmetric operator or relation in a Krein space K, τ is a matrix function and Γ0, Γ1 are abstract boundary mappings. It is assumed that A admits a self‐adjoint extension in K which locally has the same spectral properties as a definitizable relation, and that τ is a matrix function which locally can be represented with the resolvent of a self‐adjoint definitizable relation. The strict part of τ is realized as the Weyl function of a symmetric operator T in a Krein space H, a self‐adjoint extension à of A × T in K × H with the property that the compressed resolvent PK (à – λ)–1|K k yields the unique solution of the boundary value problem is constructed, and the local spectral properties of this so‐called linearization à are studied. The general results are applied to indefinite Sturm–Liouville operators with eigenvalue dependent boundary conditions (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献