首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uniform motion of the center of mass of a charged, conducting fluid, in the presence of an electromagnetic field, is derived in the first post-Newtonian approximation of general relativity. Also the source's far field metric tensor is determined, and it is expressed in terms of parameters known as three-dimensional volume integrals over its interior. These results for the above system permit the physical identification, to post-Newtonian accuracy, of the integration constants and the coordinate systems involved in the Schwarzschild and the Kerr metric tensors.  相似文献   

2.
Recently, an approximated solution of the Einstein equations for a rotating body whose mass effects are negligible with respect to the rotational ones has been derived by Tartaglia. At first sight, it seems to be interesting because both external and internal metric tensors have been consistently found, together an appropriate source tensor; moreover, it may suggest possible experimental checks since the conditions of validity of the considered metric are well satisfied at Earth laboratory scales. However, it should be pointed out that reasonable doubts exist if it is physically meaningful because it is not clear if the source tensor related to the adopted metric can be realized by any real extended body. Here we derive the geodesic equations of the metric and analyze the allowed motions in order to disclose possible unphysical features which may help in shedding further light on the real nature of such approximated solution of the Einstein equations.  相似文献   

3.
The covariance principle of general relativity is extended to internal space. Associated gauge fields and tensors are systematically described, whereupon the variational principle is set up for all gauge fields by applying a Palatini-type method, thereby giving rise to an attractive self-contained theory in which the Einstein equations are intrinsically synthesized with the generalized Yang-Mills equations. General gauge-covariant physical field equations are formulated, showing that currents, external + internal spin tensors, and energy-momentum tensors can be introduced unambiguously under these general conditions and that the associated conservation laws can be derived. The electromagnetic field finds its gauge-geometric origin as the gauge field related to internal densities. To be operative with the tensor indices of external and internal types, this general theory must be bimetric. The assumptions that the gauge-covariant derivatives of metric tensors should vanish simplify the theory to the level of a Finslerian gauge approach.  相似文献   

4.
A general scheme to average out an arbitrary 4-dimensional Riemannian space and to construct the geometry of the averaged space is proposed. It is shown that the averaged manifold has a metric and two equi-affine symmetric connections. The geometry of the space is characterized by the tensors of Riemannian and non-Riemannian curvatures, an affine deformation tensor being the result of non-metricity of one of the connections. To average out the differential Bianchi identities, correlation 2-form, 3-form and 4-form are introduced and the differential relations on these correlations tensors are derived, the relations being integrable on an arbitrary averaged manifold. Upon assuming a splitting rule for the average of the product including a covariantly constant tensor, an averaging out of the Einstein equations has been carried out which brings additional terms with the correlation tensors into them. As shown by averaging out the contracted Bianchi identities, the equations of motion for the averaged energy-momentum tensor do also include the geometric correction terms. Considering the gravitational induction tensor to be the Riemannian curvature tensor (then the non-Riemannian one is the macroscopic gravitational field), a theorem that relates the algebraic structure of the averaged microscopic metric with that of the induction tensor is proved. Due to the theorem the same field operator as in the Einstein equations is manifestly extracted from the averaged ones. Physical interpretation and application of the relations and equations obtained to treat macroscopic gravity are discussed.  相似文献   

5.
We construct all cosmic field tensors which are symmetric rank-two tensor concomitants of a metric and a background metric and which have zero divergence when the background metric satisfies the generalized De Donder condition. The resulting background cosmic field represents an Einstein space-time.  相似文献   

6.
J. Beckers  S. Sinzinkayo 《Physica A》1984,126(3):371-383
Coordinate and point transformations are studied in the context of conformal symmetry. When invariance requirements on arbitrary rank tensors are involved in both contexts, the similitudes and differences in transformation laws and invariance conditions are analysed in connection with those on tensor densities of weight W. Physically interesting tensors like the metric tensor, the electromagnetic field and the energy-momentum tensor are specifically examined. Some remarks on scalar fields and densities are added.  相似文献   

7.
A new method of calculation is given for arbitrary tensors in Riemann normal coordinates. Inventing a compact notation for an abstract form of tensors which is suitable to a noncommutative algebra system, we carry out the computer calculations to obtain coefficients of the Taylor expansion of tensors in Riemann normal coordinates. Explicit forms are given up to the tenth order for the metric tensor.  相似文献   

8.
Metric tensors play a key role to control the generation of unstructured anisotropic meshes. In practice, the most well established error analysis enables to calculate a metric tensor on an element basis. In this paper, we propose to build a metric field directly at the nodes of the mesh for a direct use in the meshing tools. First, the unit mesh metric is defined and well justified on a node basis, by using the statistical concept of length distribution tensors. Then, the interpolation error analysis is performed on the projected approximate scalar field along the edges. The error estimate is established on each edge whatever the dimension is. It enables to calculate a stretching factor providing a new edge length distribution, its associated tensor and the corresponding metric. The optimal stretching factor field is obtained by solving an optimization problem under the constraint of a fixed number of edges in the mesh. Several examples of interpolation error are proposed as well as preliminary results of anisotropic adaptation for interface and free surface problem using a level set method.  相似文献   

9.
We formulate a simple model of the primordial scalar field theory in which the metric tensor is a generalization of the metric tensor from electrodynamics in a medium. The radiation signal corresponding to the scalar field propagates with a velocity that is generally less thanc. This signal can be associated simultaneously with imaginary and real effective (momentum-dependent) masses. The requirement that the imaginary effective mass vanishes, which we take to be the prerequisite for the vacuumlike signal propagation, leads to the spontaneous splitting of the metric tensor into two distinct metric tensors: one metric tensor gives rise to masslesslike radiation and the other to a massive particle.  相似文献   

10.
The aim of this paper is to provide an overview of all the basic aspects of the torsion of a manifold, with particular stress on the expressions in an anholonomic basis. After a brief review of anholonomic bases and Koszul covariant derivative, we show how the expressions for the torsion and the Riemann tensors in a general (anholonomic) basis arise from their expressions in a coordinate basis. We further derive the expression for the contortion tensor, which arises from the requirement that an affine connection with torsion be metric (preserving). The latter requirement is related to the equivalence principle, whose mathematical aspects in a manifold with torsion are discussed next. Finally, we derive the expression for the distortion tensor, which is an analog of the curvature tensor but arising from the torsion rather than the metric tensor.  相似文献   

11.
Any surface is completely characterized by a metric and a symmetric tensor satisfying the Gauss–Codazzi–Mainardi equations (GCM), which identifies the latter as its curvature. We demonstrate that physical questions relating to a surface described by any Hamiltonian involving only surface degrees of freedom can be phrased completely in terms of these tensors without explicit reference to the ambient space: the surface is an emergent entity. Lagrange multipliers are introduced to impose GCM as constraints on these variables and equations describing stationary surface states derived. The behavior of these multipliers is explored for minimal surfaces, showing how their singularities correlate with surface instabilities.  相似文献   

12.
A study of intrinsic properties of proper Lorentz tensors (tensor fields defining proper Lorentz transformations at every point of space-time) is made, giving rise to their covariant decompositions. The exponential series for a generic 2-form is covariantly summed, and the resulting proper Lorentz tensor is expressed as a linear combination of the metric tensor, the 2-form, its dual and its energy tensor. Some covariant expressions for the 2-form corresponding to the logarithmic branches of a proper Lorentz tensor are given. Some properties of the Lorentz group are easily found, concerning the surjectivity, local injectivity and local inversibility of the exponential map.  相似文献   

13.
We report on a program, written in the computer algebra system SHEEP, for verifying the components of Killing tensors and conformal Killing tensors. We give some examples, including the components of the Killing tensor admitted by the Kerr metric. We also note that the explicit form of all conformal Killing tensors for a subclass of the Petrov typeD solutions is known.  相似文献   

14.
Kimura investigated static spherically symmetric metrics and found several to have quadratic first integrals. We use REDUCE and the package Dimsym to seek collineations for these metrics. For one metric we find that three proper projective collineations exist, two of which are associated with the two irreducible quadratic first integrals found by Kimura. The third projective collineation is found to have a reducible quadratic first integral. We also find that this metric admits two conformal motions and that the resulting reducible conformal Killing tensors also lead to Kimura's quadratic integrals. We demonstrate that when a Killing tensor is known for a metric we can seek an associated collineation by solving first order equations that give the Killing tensor in terms of the collineation rather than the second order determining equations for collineations. We report less interesting results for other Kimura metrics.  相似文献   

15.
16.
The metric-affine gravity provides a useful framework for analyzing gravitational dynamics since it treats metric tensor and affine connection as fundamentally independent variables. In this work, we show that, a metric-affine gravity theory composed of the invariants formed from non-metricity, torsion and curvature tensors can be decomposed into a theory of scalar, vector and tensor fields. These fields are natural candidates for the ones needed by various cosmological and other phenomena. Indeed, we show that the model accommodates TeVeS gravity (relativistic modified gravity theory), vector inflation, and aether-like models. Detailed analyses of these and other phenomena can lead to a standard metric-affine gravity model encoding scalars, vectors and tensors.  相似文献   

17.
The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.  相似文献   

18.
Under the influence of a constant magnetic field, the electric property of a plasma and the magnetic property of a ferrite are anisotropic. In this paper, the general coordinatefree invariant forms of the dielectric tensor of a plasma and the permeability tensor of a ferrite are obtained. The tensors are expressed explicitly as a sum of three tensors: a unit tensor, a symmetric tensor and an antisymmetric tensor, each of which is weighted by different constants. The symmetric and antisymmetric tensors are related to the unit vector of the constant magnetic field. The invariant forms in terms of the sum of the projectors of the tensors are also derived. When a Cartesian coordinate system is introduced, the invariant forms are easily reduced to the commonly used matrix representations. The invariant forms clearly show the effects of the constant magnetic field on the anisotropies of the media. Moreover, they effectuate and simplify the deduction of the general solutions of problems involving wave propagation and excitation in plasma and ferrite and thus facilitate interpretations of the final results.  相似文献   

19.
By averaging out Cartan's structure equations for a four-dimensional Riemannian space over space regions, the structure equations for the averaged space have been derived with the procedure being valid on an arbitrary Riemannian space. The averaged space is characterized by a metric, Riemannian and non-Rimannian curvature 2-forms, and correlation 2-, 3- and 4-forms, an affine deformation 1-form being due to the non-metricity of one of two connection 1-forms. Using the procedure for the space-time averaging of the Einstein equations produces the averaged ones with the terms of geometric correction by the correlation tensors. The equations of motion for averaged energy momentum, obtained by averaging out the contracted Bianchi identities, also include such terms. Considering the gravitational induction tensor to be the Riemannian curvature tensor (the non-Riemannian one is then the field tensor), a theorem is proved which relates the algebraic structure of the averaged microscopic metric to that of the induction tensor. It is shown that the averaged Einstein equations can be put in the form of the Einstein equations with the conserved macroscopic energy-momentum tensor of a definite structure including the correlation functions. By using the high-frequency approximation of Isaacson with second-order correction to the microscopic metric, the self-consistency and compatibility of the equations and relations obtained are shown. Macrovacuum turns out to be Ricci non-flat, the macrovacuum source being defined in terms of the correlation functions. In the high-frequency limit the equations are shown to become Isaacson's ones with the macrovauum source becoming Isaacson's stress tensor for gravitational waves.  相似文献   

20.
A measure of the difference between two chemical-shift tensors is developed by defining the scalar distance between them. Chemical-shift tensors are treated as functions whose domain is the surface of a sphere and the mathematical definition of the quadratic distance between two functions is invoked. Expressions for the distance between two chemical-shift tensors are developed in the Cartesian and irreducible spherical representations and in a new icosahedral representation. A representation wherein the chemical-shift tensor is specified by the shifts when the magnetic field is along six directions defined by the vertices of an isosahedron is developed and its properties are discussed. The expression for the distance between two tensors is found to be particularly attractive and useful in this icosahedral representation. The distance between tensors computed in the icosahedral representation is useful in fitting linear models to tensor data. It is shown how such fitting can contribute to the assignment of tensors obtained from single-crystal studies. A quantitative figure of merit useful for comparing multiple assignment possibilities is developed. The results derived are applicable to any physical phenomenon described by real zero-rank and second-rank tensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号