首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molar enthalpies of reaction of metallic barium with 0.047 mol·dm−3 HClO4 as well as the molar enthalpies of dissolution of BaCl2 in 1.01 mol·dm−3 HCl and in water have been measured at T=298.15 K in a sealed swinging calorimeter with an isothermal jacket. From these results the standard molar enthalpy of formation of the barium ion in an aqueous solution at infinite dilution, as well as the enthalpies of formation of barium chloride and barium perchlorate, are calculated to be: ΔfH0m(Ba2+,aq)=−(535.83±1.25) kJ · mol−1; ΔfH0m(BaCl2,cr)=−(855.66±1.28) kJ · mol−1; and ΔfH0m(BaClO4,cr)=−(796.26±1.35) kJ · mol−1. The results obtained are discussed and compared with previous experimental values.  相似文献   

2.
The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.  相似文献   

3.
Two micro-combustion bombs developed from a high pressure stainless steel vessel have been adapted to a Setaram C80 Calvet calorimeter. The constant of each micro-bomb was determined by combustions with benzoic acid NIST 39j, giving for the micro-combustion bomb in the measurement sensor km=(1.01112±0.00054) and for the micro-combustion bomb in the reference sensor kr=(1.00646±0.00059) which means an uncertainty of less than 0.06 per cent for calibration. The experimental methodology to get results of combustion energy of organic compounds with a precision also better than 0.06 per cent is described by applying this micro-combustion device to the measurement of the enthalpy of combustion of the succinic acid, giving ΔcHm(cr, T=298.15 K)=−(1492.89 ± 0.77) kJ · mol−1.  相似文献   

4.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

5.
Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, ΔsolHm(T = 295.73 K; m = 0.0622 mol · kg−1) = (17.83 ± 0.50) kJ · mol−1; cesium bromide, ΔsolHm(T = 293.99 K; m = 0.0238 mol · kg−1) = (26.91 ± 0.59) kJ · mol−1; cesium nitrate, ΔsolHm(T = 294.68 K; m = 0.0258 mol · kg−1) = (37.1 ± 2.3) kJ · mol−1; cesium sulfate, ΔsolHm(T = 296.43 K; m = 0.0284 mol · kg−1) = (16.94 ± 0.43) kJ · mol−1; cesium formate, ΔsolHm(T = 295.64 K; m = 0.0283 mol · kg−1) = (11.10 ± 0.26) kJ · mol−1 and ΔsolHm(T = 292.64 K; m = 0.0577 mol · kg−1) = (11.56 ± 0.56) kJ · mol−1; and cesium oxalate, ΔsolHm(T = 291.34 K; m = 0.0143 mol · kg−1) = (22.07 ± 0.16) kJ · mol−1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs)2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations.  相似文献   

6.
The strain energy of phenanthrene was derived to be (4.9 ± 2.8) kJ · mol−1, on the basis of the latest standard enthalpies of formation of polycyclic aromatic hydrocarbons. This strain energy agrees well with those estimated from a semi-empirical calculation and from the basicity in hydrogen fluoride solution. The calculation again confirmed the standard enthalpy of formation of phenanthrene, ΔfH0(g)=(201.7±2.9) kJ · mol−1 at T=298.15 K, which was determined by Nagano (J. Chem. Thermodyn. 34 (2002) 377–383). The coupling constant J4,5 in 1H-n.m.r. spectrum of phenanthrene in CDCl3 solution was determined to be 0.55 Hz, which indicates no significant through-space coupling between the 4- and 5-hydrogens.  相似文献   

7.
Microcalorimetry, spectrophotometry, and high-performance liquid chromatography (h.p.l.c.) have been used to conduct a thermodynamic investigation of the glutathione reductase catalyzed reaction {2 glutathionered(aq) + NADPox(aq)=glutathioneox(aq) + NADPred(aq)}. The reaction involves the breaking of a disulfide bond and is of particular importance because of the role glutathionered plays in the repair of enzymes. The measured values of the apparent equilibrium constant K for this reaction ranged from 0.5 to 69 and were measured over a range of temperature (288.15 K to 303.15 K), pH (6.58 to 8.68), and ionic strength Im (0.091 mol · kg−1 to 0.90 mol · kg−1). The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations led to values of thermodynamic quantities at T=298.15 K and Im=0 for a chemical reference reaction that involves specific ionic forms. Thus, for the reaction {2 glutathionered(aq) + NADPox3−(aq)=glutathioneox2−(aq) + NADPred4−(aq) + H+(aq)}, the equilibrium constant K=(6.5±4.4)·10−11, the standard molar enthalpy of reaction ΔrHom=(6.9±3.0) kJ · mol−1, the standard molar Gibbs free energy change ΔrGom=(58.1±1.7) kJ · mol−1, and the standard molar entropy change ΔrSom=−(172±12) J · K−1 · mol−1. Under approximately physiological conditions (T=311.15 K, pH=7.0, and Im=0.25 mol · kg−1 the apparent equilibrium constant K≈0.013. The results of the several studies of this reaction from the literature have also been examined and analyzed using the chemical equilibrium model. It was found that much of the literature is in agreement with the results of this study. Use of our results together with a value from the literature for the standard electromotive force Eo for the NADP redox reaction leads to Eo=0.166 V (T=298.15 K and I=0) for the glutathione redox reaction {glutathioneox2−(aq) + 2 H+(aq) + 2 e=2 glutathionered(aq)}. The thermodynamic results obtained in this study also permit the calculation of the standard apparent electromotive force E′o for the biochemical redox reaction {glutathioneox(aq) + 2 e=2 glutathionered(aq)} over a wide range of temperature, pH, and ionic strength. At T=298.15 K, I=0.25 mol · kg−1, and pH=7.0, the calculated value of E′o is −0.265 V.  相似文献   

8.
《Thermochimica Acta》1998,316(1):101-108
A horizontal thermal analysis system was adopted for the measurement of vapour pressure of C60 using the vapour transport technique. The experimental precautions taken in order to ensure measurement of equilibrium vapour pressure by the transpiration method are described. The equilibrium nature of these measurements was ensured by the existence of plateau regions in the isothermal plots of apparent vapour pressure as a function of flow rate of the carrier gas. To verify the applicability of this TG based transpiration method, vapour pressure of CsI was measured to be log(p/Pa)=11.667±0.013−(9390±0.078)/T (K) over the range 737–874 K yielding a value of 195.6 kJ mol−1 for the third-law enthalpy of sublimation, ΔH0sub,298 of CsI, the value which compares well with the literature data. The vapour pressure measurements on C60 over the range 789–907 K could be represented by log(p/Pa)=9.018±0.061−(7955±0.280)/T(K). Third-law treatment of the data yielded a value of 183.5±1.0 kJ mol−1 for ΔH0sub,298 of C60 which is in good agreement with some of the other vapour pressure measurements in the literature, if subjected to third-law processing using the same set of free energy functions reliably reported in the literature.  相似文献   

9.
Two pure zinc borates with microporous structure 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O have been synthesized and characterized by XRD, FT-IR, TG techniques and chemical analysis. The molar enthalpies of solution of 3ZnO·3B2O3·3.5H2O(s) and 6ZnO·5B2O3·3H2O(s) in 1 mol · dm−3 HCl(aq) were measured by microcalorimeter at T = 298.15 K, respectively. The molar enthalpies of solution of ZnO(s) in the mixture solvent of 2.00 cm3 of 1 mol · dm−3 HCl(aq) in which 5.30 mg of H3BO3 were added were also measured. With the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl(aq), together with the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(6115.3 ± 5.0) kJ · mol−1 for 3ZnO·3B2O3·3.5H2O and −(9606.6 ± 8.5) kJ · mol−1 for 6ZnO·5B2O3·3H2O at T = 298.15 K were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

10.
Measurements of vapour pressure in the liquid phase and of enthalpy of vaporisation and results of calculation of ideal-gas properties for diethyl phthalate are reported. The method of comparative ebulliometry, the static method, and the Knudsen mass-loss effusion method were employed to determine the vapour pressure. A Calvet-type differential microcalorimeter was used to measure the enthalpy of vaporisation. Simultaneous correlation of vapour pressure, of enthalpy of vaporisation and of difference in heat capacities of ideal gas and liquid/solid phases was used to generate parameters of the Cox equation that cover both the (vapour + solid) equilibrium (approximate temperature range from 220 K to 270 K) and (vapour + liquid) equilibrium (from 270 K to 520 K). Vapour pressure and enthalpy of vaporisation derived from the fit are reported at the triple-point temperature T = 269.92 K (p = 0.0029 Pa, ΔvapHm = 85.10 kJ · mol−1 ), at T = 298.15 K (p = 0.099 Pa, ΔvapHm = 82.09 kJ · mol−1), and at the normal boiling temperature T = 570.50 K (ΔvapHm = 56.49 kJ · mol−1). Measured vapour pressures and measured and calculated enthalpies of vaporisation are compared with literature data.  相似文献   

11.
The constant-volume energy of combustion of crystalline anhydrous caffeine (C8H10N4O2) in α (lower temperature steady) crystal form was measured by a bomb combustion calorimeter, the standard molar enthalpy of combustion of caffeine at T = 298.15 K was determined to be −(4255.08 ± 4.30) kJ · mol−1, and the standard molar enthalpy of formation was derived as −(322.15 ± 4.80) kJ · mol−1. The heat capacity of caffeine in the same crystal form was measured in the temperature range from (80 to 387) K by an adiabatic calorimeter. No phase transition or thermal anomaly was observed in the above temperature range. The thermal behavior of the compound was further examined by thermogravimetry (TG), differential thermal analysis (DTA) over the range from (300 to 700) K and by differential scanning calorimetry (DSC) over the range from (300 to 540) K, respectively. From the above thermal analysis a (solid–solid) and a (solid–liquid) phase transition of the compound were found at T = (413.39 and 509.00) K, respectively; and the corresponding molar enthalpies of these transitions were determined to be (3.43 ± 0.02) kJ · mol−1for the (solid–solid) transition, and (19.86 ± 0.03) kJ · mol−1 for the (solid–liquid) transition, respectively.  相似文献   

12.
A visible spectrophotometric method has been developed for the reaction kinetics of o-phenylenediamine in the presence of gold (III). The method is based on the measurement of the absorbance of the reaction o-phenylenediamine and gold (III). Optimum conditions for the reaction were established as pH 6 at λ = 466 nm.When the reaction kinetic of o-phenylenediamine by gold (III) was investigated, it was observed that the following rate formula was found as ln (A/A0) = kt, according to absorbance measurements. The activation energy Ea and Arrhenius constant A were calculated from the Arrhenius equation as 1.009 kJ · mol−1 and 3.46 · 10−2 s−1, respectively. Other activation thermodynamic parameters, entropy, ΔS (J · mol−1 · K−1), enthalpy, ΔH (kJ · mol−1), Gibbs free energy, ΔG (kJ · mol−1) and equilibrium constant, Ke were calculated at T = (283.2, 303.2, 323.2, and 343.2) K. The study was exothermic due to the decrease of entropy and was a non-spontaneous process during activation.  相似文献   

13.
The energetic study of 4-nitro-2,1,3-benzothiadiazole has been developed using experimental techniques together with computational approaches. The standard (p° = 0.1 MPa) molar enthalpy of formation of crystalline 4-nitro-2,1,3-benzothiadiazole (181.9 ± 2.3 kJ · mol−1) was determined from the experimental standard molar energy of combustion −(3574.3 ± 1.3) kJ · mol−1, in oxygen, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The standard (p° = 0.1 MPa) molar enthalpy of sublimation, at T = 298.15 K, (101.8 ± 4.3) kJ · mol−1, was determined by a direct method, using the vacuum drop microcalorimetric technique. From the latter value and from the enthalpy of formation of the solid, it was calculated the standard (p° = 0.1 MPa) enthalpy of formation of gaseous 4-nitro-2,1,3-benzothiadiazole as (283.7 ± 4.9) kJ · mol−1. Standard ab initio molecular orbital calculations were performed using the G3(MP2)//B3LYP composite procedure and several working reactions in order to derive the standard molar enthalpy of formation 4-nitro-2,1,3-benzothiadiazole. The ab initio results are in good agreement with the experimental data.  相似文献   

14.
New compounds of aspartic acid Cs(ASP) · nH2O (n = 0, 1) have been synthesized and characterized by XRD, IR and Raman spectroscopy as well as TG. The structural formula of this new compound was Cs(ASP) · nH2O (n = 0, 1). The enthalpy of solution of Cs(ASP) · nH2O (n = 0, 1) in water were determined. With the incorporation of the standard molar enthalpies of formation of CsOH(aq) and ASP(s), the standard molar enthalpy of formation of −(1202.9 ± 0.2) kJ · mol−1 of Cs(ASP) and −(1490.7 ± 0.2) kJ · mol−1 of Cs(ASP) · H2O were obtained.  相似文献   

15.
The (solid + liquid) phase equilibria of the ternary systems (CsBr + LnBr3 + H2O) (Ln = Pr, Nd, Sm) at T = 298.2 K were studied by the isothermal solubility method. The solid phases formed in the systems were determined by the Schreinemakers wet residues technique, and the corresponding phase diagrams were constructed based on the measured data. Each of the phase diagrams, with two invariant points, three univariant curves, and three crystallization regions corresponding to CsBr, Cs2LnBr5·10H2O and LnBr3·nH2O (n = 6, 7), respectively, belongs to the same category. The new solid phase compounds Cs2LnBr5·10H2O are incongruently soluble in water, and they were characterized by chemical analysis, XRD and TG-DTG techniques. The standard molar enthalpies of solution of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O in water were measured to be (52.49 ± 0.48) kJ · mol−1, (49.64 ± 0.49) kJ · mol−1 and (50.17 ± 0.48) kJ · mol−1 by microcalorimetry under the condition of infinite dilution, respectively, and their standard molar enthalpies of formation were determined as being −(4739.7 ± 1.4) kJ · mol−1, −(4728.4 ± 1.4) kJ · mol−1 and −(4724.4 ± 1.4) kJ · mol−1, respectively. The fluorescence excitation and emission spectra of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O were measured. The results show that the upconversion spectra of the three new solid phase compounds all exhibit a peak at 524 nm when excited at 785 nm.  相似文献   

16.
A new amino acid ionic liquid (AAIL) [C3mim][Val] (1-propyl-3-methylimidazolium valine) was prepared by the neutralization method. Using the solution-reaction isoperibol calorimeter, molar solution enthalpies of the ionic liquid [C3mim][Val] with known amounts of water and with different concentrations in molality were measured at T = 298.15 K. In terms of standard addition method (SAM) and Archer’s method, the standard molar enthalpy of solution for [C3mim][Val] without water, ΔsHm = (−55.7 ± 0.4) kJ · mol−1, was obtained. The hydration enthalpy of the cation [C3mim]+, ΔH+ ([C3mim]+) = −226 kJ · mol−1, was estimated in terms of Glasser’s theory. Using the RD496-III heat conduction microcalorimeter, the molar enthalpies of dilution, ΔDHm(mi  mf), of aqueous [C3mim][Val] with various values of molality were measured. The values of ΔDHm(mi  mf) were fitted to Pitzer’s ion-interaction model and the values of apparent relative molar enthalpy, φL, calculated using Pitzer’s ion-interaction model.  相似文献   

17.
Values of the condensed phase standard (p = 0.1 MPa) molar enthalpy of formation for 2′- and 4′-methylacetophenones were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The values of the standard molar enthalpy of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. Combining these two values, the following enthalpies of formation in the gas phase, at T = 298.15 K, were then derived: 2′-methylacetophenone, –(115.7 ± 2.4) kJ · mol−1, and 4′-methylacetophenone, –(122.6 ± 2.4) kJ · mol−1. Substituent effects are discussed in terms of stability and compared with other similar compounds. The value of the standard molar enthalpy of formation for 3′-methylacetophenone was estimated from isomerization schemes.  相似文献   

18.
Two pure hydrated lead borates, Pb(BO2)2·H2O and PbB4O7·4H2O, have been characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Pb(BO2)2·H2O and PbB4O7·4H2O in 1 mol dm?3 HNO3(aq) were measured to be (?35.00 ± 0.18) kJ mol?1 and (35.37 ± 0.14) kJ mol?1, respectively. The molar enthalpy of solution of H3BO3(s) in 1 mol dm?3 HNO3(aq) was measured to be (21.19 ± 0.18) kJ mol?1. The molar enthalpy of solution of PbO(s) in (HNO3 + H3BO3)(aq) was measured to be ?(61.84 ± 0.10) kJ mol?1. From these data and with incorporation of the enthalpies of formation of PbO(s), H3BO3(s) and H2O(l), the standard molar enthalpies of formation of ?(1820.5 ± 1.8) kJ mol?1 for Pb(BO2)2·H2O and ?(4038.1 ± 3.4) kJ mol?1 for PbB4O7·4H2O were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

19.
Low-temperature heat capacities of pyrimethanil laurate (C24H37N3O2) were precisely measured with an automated adiabatic calorimeter over the temperature range between T = 78 K and T = 340 K. The sample was observed to melt at (321.52 ± 0.04) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined to be (67244 ± 11) J · mol−1, (209.28 ± 0.02) J · mol−1 · K−1, (0.9943 ± 0.0004) mass fraction, respectively. The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments was (322.264 ± 0.006) K.  相似文献   

20.
To obtain reliable thermodynamic data for Na2S(s), solid-state EMF measurements of the cell Pd(s)|O2(g)|Na2S(s), Na2SO4(s)|YSZ| Fe(s), FeO(s)|O2(g)ref| Pd(s) were carried out in the temperature range 870 < T/K < 1000 with yttria stabilized zirconia as the solid electrolyte. The measured EMF values were fitted according to the equation Efit/V (±0.00047) = 0.63650  0.00584732(T/K) + 0.00073190(T/K) ln (T/K). From the experimental results and the available literature data on Na2SO4(s), the equilibrium constant of formation for Na2S(s) was determined to be lg Kf(Na2S(s)) (±0.05) = 216.28  4750(T/K)−1  28.28878 ln (T/K). Gibbs energy of formation for Na2S(s) was obtained as ΔfG(Na2S(s))/(kJ · mol−1) (±1.0) = 90.9  4.1407(T/K) + 0.5415849(T/K) ln (T/K). By applying third law analysis of the experimental data, the standard enthalpy of formation of Na2S(s) was evaluated to be ΔfH(Na2S(s), 298.15 K)/(kJ · mol−1) (±1.0) = −369.0. Using the literature data for Cp and the calculated ΔfH, the standard entropy was evaluated to S(Na2S(s), 298.15 K)/(J · mol−1 · K−1) (±2.0) = 97.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号