首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Our work presents extensions of multi layered composite sphere models known from the literature to temperature-dependent elastic effects accompanied by curing. In particular, volumetric effective properties are obtained by homogenization for a representative unit cell (micro-RVE) on the heterogeneous microscale for thermo-chemo-mechanical coupling within linear elasticity. To this end, an analytical solution for an n-layered composite sphere model is derived. In a numerical study for a (3)-phase matrix it is demonstrated that the effective elastic and thermal properties lie within Voigt and Reuss bounds, whilst for the chemical part of the model an analogous result is obtained for the effective strains. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Motivated by the increased use of fibre-reinforced materials, we illustrate how the effective elastic modulus of an Isotropic and homogeneous material can be increased by the insertion of rigid inclusions. Specifically, we consider the two-dimensional antiplane shear problem for a strip of material. The strip is reinforced by introducing two sets of ribbon-like, rigid inclusions perpendicular to the faces of the strip. The strip is then subjected to a prescribed uniform displacement difference between its faces, see Figure 1. It should be noted that the problem posed is equivalent to that of the uniform antiplane shear problem for an infinite two-dimensional material containing a staggered array of rigid inclusions (see [1] for a review of antiplane problems in the literature). The problem is reduced in standard fashion [2–6] to a mixed boundary value problem in a rectangular domain, whose closed form solution given in terms of integrals of Weierstrassian Elliptic functions, is obtained via triple sine series techniques. The effective shear modulus of the reinforced strip can now be calculated and compared with the shear modulus of a strip without inclusions. Also obtained are the stress singularity factors at the end tips of the inclusions. Numerical results are presented for several different reinforcement geometries.  相似文献   

3.
Elastic wave energy dissipation and absorption properties of viscoelastic damping material (VDM) composite plates embedded with acoustic black hole (ABH) are analyzed in this paper. Considering the periodic distribution of the ABH-embedded VDM structure in the composite plate, semi-analytical homogeneous asymptotic theory is applied, which transforms the macroscopic to a microscopic problem. In-plane variables of the composite structure are defined and generated by the third-order shear deformation theory of Reddy, and the equilibrium equations are derived by extended Hamilton's principle and the internal balance is consequently determined by representative volume element theory. Determining the constitutive equations of the composite laminate structure allow the equivalent shear and strain equilibrium equations to be achieved. Subsequently, the complex equivalent stiffness is defined according to the general Hooke's law, and the dimensionless equivalent loss tangent tanδ of the composite sandwich plate is finally evaluated from the equivalent loss and storage modulus. The ABH and VDM layer factors which affect tanδ are thoroughly analyzed and discussed. The investigation can supply a new efficient method to dissipate and absorb propagation wave energy with a wide bandwidth at low frequency. Additionally, the analysis is validated by numerical simulation and Galerkin methods.  相似文献   

4.
This work deals with a study of the vibrational properties of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs) under the actions of moving load. Timoshenko and Euler-Bernoulli beam theories are used to evaluate dynamic characteristics of the beam. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The primary contribution of the present work deals with the global elastic properties of nano-structured composite beams. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Timoshenko beam theory. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. In order to evaluate time response of the system, Newmark method is also used. Numerical results are presented in both tabular and graphical forms to figure out the effects of various material distributions, carbon nanotube orientations, velocity of the moving load, shear deformation, slenderness ratios and boundary conditions on the dynamic characteristics of the beam. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam and it is believed that new results are presented for dynamics of FG nano-structure beams under moving loads which are of interest to the scientific and engineering community in the area of FGM nano-structures.  相似文献   

5.
A relation is proposed for determining of the shear modulus of a fibrous composite material with a transversely isotropic matrix and a fibre as a function of the elastic constants of the matrix and the fibre as well as the volume fraction of each of them in the composite material. The isotropy planes of the matrix and fibre coincide and are perpendicular to the fibre axis. Two boundary value problems are solved in order to obtain the required relation: the problem of the longitudinal shear of a transversely isotropic solid cylinder that simulates the fibrous composite material and the problem of the combined longitudinal shear of a hollow and solid cylinder that simulate the matrix material and the fibre material respectively. Calculations using the proposed formula are compared with the available experimental data.  相似文献   

6.
球形涂层粒子增强复合材料的有效模量   总被引:2,自引:0,他引:2  
本文通过四相球模型和复合材料的等效介质理论,研究了球形涂层粒子增强复合材料的有效模量性质,得到了这种增强复合材料的有效体积模量和有效剪切模量的理论预测公式。这些结果在特殊情况下,可退化到三相球模型确定的球形粒子增强复合材料的有效模量公式。  相似文献   

7.
In the present work, a model of nonlinear deformation of stochastic composites under microdamaging is developed for the case of a composite with orthotropic inclusions, when microdefects are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by triaxial arbitrarily oriented ellipsoidal inclusions with orthotropic symmetry of the elastic properties. It is assumed that the process of loading leads to accumulation of damage in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic modules in the case of orthotropic components are taken as basic relations. The fracture criterion is specified as the limiting value of the intensity of average shear stresses acting in the intact part of the material. On the basis of the analytic and numerical approach, we propose an algorithm for the determination of nonlinear deformation properties of the investigated material. The nonlinearity of composite deformations is caused by the finiteness of deformations. By using the numerical solution, the nonlinear stress–strain diagrams are predicted and discussed for an orthotropic composite material for various cases of orientation of inclusions in the matrix.  相似文献   

8.
Formal series of powers of Fourier coefficients for the effective elastic constants of a heterogeneous material (Herring’s series) are considered. It is demonstrated that, on their basis, all the known exact solutions of an elastic problem for a two-dimensional two-phase composite can be found. It is also shown how a full renormalization of the series for the inverse bulk modulus can be carried out. A general expression for Young’s modulus is deduced, leading to considerable simplifications in some special cases. All results have been obtained without any restrictions on the Fourier coefficients of local parameters of the composite.  相似文献   

9.
The doubly periodic arrays of cracks represent an important mesoscopic model for analysis of the damage and fracture mechanics behaviors of materials. Here, in the framework of a continuously distributed dislocation model and singular integral equation approach, a highly accurate solution is proposed to describe the fracture behavior of orthotropic solids weakened by doubly periodic strip-like cracks on rectangular lattice arrays under a far-field longitudinal shear load. By fully comparing the current numerical results with known analytical and boundary element solutions, the high precision of the proposed solution is verified. Furthermore, the effects of periodic parameters and orthotropic parameter ratio on the stress intensity factor, crack tearing displacement, and effective shear modulus are studied, and an analytically polynomial estimation for the equivalent shear modulus is proposed in a certain range. The interaction distances among the vertical and horizontal periodic cracks are quite different, and their effects vary with the orthotropic parameter ratio. In addition, the dynamic problem is discussed briefly in the case where the material is subjected to harmonic longitudinal shear stress waves. Further work will continue the in-depth study of the dynamics problem of the doubly periodic arrays of cracks.  相似文献   

10.
In this contribution a modelling approach using numerical homogenisation techniques is applied to predict the effective nonlinear material behaviour of composites from simulations of a representative volume element (RVE). Numerical models of the heterogeneous material structure in the RVE are generated using the eXtended Finite Element Method (XFEM) which allows for a regular mesh. Suitable constitutive relations account for the material behaviour of the constituents. The influence of the nonlinear matrix material behaviour on the composite is studied in a physically nonlinear FE simulation of the local material behaviour in the RVE ­ effective stress-strain curves are computed and compared to experimental observations. The approach is currently augmented by a damage model for the fibre bundle. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A generalized self-consistent method is extended to particulate viscoelastic composites with elastomeric matrices and high volume fractions of elastic inclusions. It is shown that the effective bulk modulus of a composite coincides with the bulk modulus of particles. A quadratic operator equation is derived for an analog of the effective shear relaxation kernel. This equation is explicitly solved using the Laplace transform method. The influence of material and geometrical parameters of a composite on its effective viscoelastic moduli is analyzed numerically.  相似文献   

12.
Mike Richter 《PAMM》2005,5(1):359-360
This paper concerns with the development of the macroscopic material behaviour of textile reinforced concrete (TRC) using an analytical approach. Therefore the heterogeneous structure of TRC is modelled on the mesoscopic level. The overall material behaviour on the macroscopic level is obtained by means of the homogenisation technique. The analytical approach is based on the micro mechanical solution for a single inclusion according to Eshelby . In extension of this solution for multidirectional reinforced concrete an effective field approximation is used. This approach considers the interactions between the different orientated rovings and the micro cracks in an average sense. For the mechanical modelling of the bond behaviour between roving and matrix after initiating of the macro cracking a slip based bond model with a multiple linear shear stress-slip relation is used. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this work we present a novel approach to the modeling of magnetorheological elastomers (MREs) for finite deformations. Keeping in mind the composite nature at the microscale, we employ the microsphere model as an effective tool to capture the constitutive response of the material. The microsphere model has been successfully applied to the modelling of rubber-like materials. Here, we extend this approach by taking into account the effect of the magnetic dipole-dipole interactions on the orientation of the polymer chains. Thus, the presented microsphere model is directly motivated by considering the underlying phenomena at the microscale level. Finally the material model is embedded in a finite element framework and the results of a boundary value problems is presented. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In the present paper, a model of deformation of stochastic composites under microdamaging is developed for the case of orthotropic composite, when the microdamages are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by three-axial ellipsoidal inclusions with orthotropic symmetry of elastic properties. It is assumed that the loading process leads to accumulation of damages in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic moduli for the case of a composite with orthotropic components are taken as the basic relations. The fracture criterion is assumed to be given as the limit value of the intensity of average shear stresses occurring in the undamaged part of the material. Based on the analytical and numerical approach, an algorithm for the determination of nonlinear deformation properties of such a material is constructed. The nonlinearity of composite deformations is caused by the accumulation of microdamages in the matrix. Using the numerical solution, nonlinear stress-strain diagrams for the orthotropic composite in the case of biaxial extension are obtained. Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 1, pp. 121–130, January–March, 2008.  相似文献   

15.
In real composite materials an additional phase may exist between the fiber and the matrix. This phase, commonly known as the interphase, is a local region that results from the matrix bonds with the fiber surface or the fiber sizing. The differing thermal expansions or contractions of the fiber and matrix cause thermally induced stresses in composite materials. In the present study, a four-cylinder model is proposed for the determination of residual thermal stresses in unidirectional composite materials. The elastic modulus of the interphase is a function of the interphase radius and thickness. The governing equations in terms of displacements are solved in the form of expansion into a series [1]. The effective elastic characteristics are obtained using the finite element approach. The effect of the interphase thickness and different distributions of the interphase Young's modulus on the thermal residual stress field in unidirectional composite materials is investigated.For Pt. 1, see [1].Published in Mekhanika Kompozitnykh Materialov, Vol. 33, No. 2, pp. 200–214, March–April, 1997.  相似文献   

16.
Typically the elastic and electrical properties of composite materials are strongly microstructure dependent. So it comes as a nice surprise to come across exact formulae for effective moduli that are universally valid no matter what the microstructure. Such exact formulae provide useful benchmarks for testing numerical and actual experimental data and for evaluating the merit of various approximation schemes. They can also be regarded as fundamental invariances existing in a given physical context. Classic examples include Hill's formulae for the effective bulk modulus of a two‐phase mixture when the phases have equal shear moduli, Levin's formulae linking the effective thermal expansion coefficient and effective bulk modulus of two‐phase mixtures, and Dykhne's result for the effective conductivity of an isotropic two‐dimensional polycrystalline material. Here we present a systematic theory of exact relations embracing the known exact relations and establishing new ones. The search for exact relations is reduced to a search for matrix subspaces having a structure of special Jordan algebras. One of many new exact relations is for the effective shear modulus of a class of three‐dimensional polycrystalline materials. We present complete lists of exact relations for three‐dimensional thermoelectricity and for three‐dimensional thermopiezoelectric composites that include all exact relations for elasticity, thermoelasticity, and piezoelectricity as particular cases. © 2000 John Wiley & Sons, Inc.  相似文献   

17.
Splittings of a free group correspond to embedded spheres in the 3-manifold M = # k S 2 × S 1. These can be represented in a normal form due to Hatcher. In this paper, we determine the normal form in terms of crossings of partitions of ends corresponding to normal spheres, using a graph of trees representation for normal forms. In particular, we give a constructive proof of a criterion determining when a conjugacy class in π 2(M) can be represented by an embedded sphere.  相似文献   

18.
In recent years the interest in materials with specific adjustable properties has increased due to higher requirements on the material performance. Here a smart composite material is to be developed, whose stiffness can be varied subjected to a magnetic field. To realise this aim a magnetorheological fluid (MRF) embedded in a polymeric matrix material is considered. To model the material behaviour of the composite a homogenisation method will be applied. Amongst others this requires the knowledge of the multiaxial material behaviour of each constituent. The modelling of the material behaviour of MRF under shear deformation, which is the aim of this work, represents the first step in this process. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Conclusions 1. Upon the loading of a composite shell having a metallic matrix the shear effects are insignificant even in the case of comparatively large volume reinforcement contents and wall thicknesses.2. The principal modulus of a material which determines the stability of a reinforced shell upon isotropic external pressure is the secant modulus in the circumferential direction.3. In the case of complex reinforcement schemes some decrease in the stability of the shell is possible, probably due to an imperfection in reinforcement technology.Institute of Solid State Physics, Academy of Sciences of the USSR, Moscow Region. Translated from Mekhanika Polimerov, No. 1, pp. 90–95, January–February, 1977.  相似文献   

20.
著名的Yau 猜想断言单位球面中的紧致嵌入极小超曲面的Laplace 算子的第一特征值等于其维数. 近年来有许多几何学家致力于对Yau 猜想的研究, 但是到目前为止, 已有的结论只是一些关于第一特征值估计的不等式. 作为本文的一个主要结果, 本文证明了对于单位球面中的等参极小超曲面,Yau 猜想是正确的. 进一步地, 对于等参超曲面的焦流形(实际上是球面的极小子流形), 本文还证明了在一定维数条件下, 它的第一特征值也是其维数.
作为本文的第二个主要结果, 以著名的Schoen-Yau-Gromov-Lawson 的关于数量曲率的手术理论为出发点, 本文在一个Riemann 流形的嵌入超曲面处作手术, 构造了一个新的具有丰富几何性质的流形, 称为double 流形. 特别地, 本文在单位球面的极小等参超曲面处实行了这一手术, 发现得到的double 流形不仅有很复杂的拓扑(但其示性类有精确描述), 还存在数量曲率为正的度量, 更重要的是保持了等参叶状结构.
比Willmore 曲面更广泛的定义是Willmore 子流形, 即Willmore 泛函在球面中的的极值子流形.单位球面中的Willmore 子流形的例子在已有文献中是非常罕见的. 作为本文的另外两个主要结果, 通过深入挖掘单位球面上的OT-FKM- 型等参函数的焦流形的性质, 本文发现其极大值对应的焦流形是单位球面的一系列Willmore 子流形; 之后, 本文用几何办法统一证明了单位球面中具有4 个不同主曲率的等参超曲面的焦流形都是单位球面的Willmore 子流形. 这些新的Willmore 子流形是极小的,但一般不是Einstein 的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号