首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal conductivity κ and electrical resistivity ρ of a white-eucalyptus cellular carbon preform used to fabricate silicon-carbide-based (SiC/Si) biomorphic ceramics have been measured in the 5-to 300-K temperature interval. The carbon preform was obtained by pyrolysis (carbonization) of white-eucalyptus wood at 1000°C in an argon ambient. The κ(T) and ρ(T) relations were measured on samples cut along the tree growth direction. The experimental data obtained were processed.  相似文献   

2.
Natural composites (biocarbons) obtained by carbonization of beech wood at different carbonization temperatures T carb in the range of 800–2400°C have been studied using X-ray diffraction. The composites consist of an amorphous matrix and nanocrystallites of graphite and graphene. The volume fractions of the amorphous and nanocrystalline phases as functions of T carb have been determined. Temperature dependences of the phonon thermal conductivity κ(T) of the biocarbons with different temperatures T carb (1000 and 2400°C) have been analyzed in the range of 5–300 K. It has been shown that the behavior of κ(T) of the biocarbon with T carb = 1000°C is controlled by the amorphous phase in the range of 5–50 K and by the nanocrystalline phase in the range of 100–300 K. The character of κ(T) of the biocarbon with T carb = 2400°C is determined by the heat transfer (scattering) in the nanocrystalline phase over the entire temperature range of 5–300 K.  相似文献   

3.
The effect of partial graphitization on electrical and galvanomagnetic properties of BE-C(Fe) biomorphic carbons produced by beech wood carbonization at temperatures of 850–1600°C in the presence of an iron-containing catalyst is studied. The use of an Fe catalyst at Т carb ≥ 1000°C leads to the formation of nanoscale graphite-phase inclusions; its total volume and nanocrystallite sizes increase with Т carb. The data on the carrier concentration and mobility are obtained. It was shown that partially graphitized BE-C(Fe) carbons with Т carb ≥ 1000°C in the conductivity type and magnetoresistance features relate to highly disordered metal systems whose conductivity can be described taking into account the contribution of quantum corrections, mainly the correction caused by the electron–electron interaction. It is shown that nonmonotonic dependences of the Hall constant R on the magnetic field are characteristic of BE-C(Fe) samples with 1000 ≤ Т carb < 1600°C, which is most probably caused by the contribution of various carrier groups, i.e., electrons and holes. In BE-C(Fe) samples with Т carb = 1600°C, the Hall coefficient corresponds to the metal state, which is associated with conducting medium homogenization resulting from the formation of a significant graphite phase volume.  相似文献   

4.
High-porosity samples of beech wood biocarbon (BE-C) were prepared by pyrolysis at carbonization temperatures T carb = 650, 1300, and 1600°C, and their resistivity ρ and thermal conductivity κ were studied in the 5–300 and 80–300 K temperature intervals. The experimental results obtained were evaluated by invoking X-ray diffraction data and information on the temperature dependences ρ(T) and κ(T) for BE-C samples prepared at T carb = 800, 1000, and 2400°C, which were collected by the authors earlier. An analysis of the κ(T carb) behavior led to the conclusion that the samples under study undergo an amorphous-nanocrystalline phase transition in the interval 800°C < T carb < 1000°C. Evaluation of the electronic component of the thermal conductivity revealed that the Lorentz number of the sample prepared at T carb = 2400°C exceeds by far the classical Sommerfeld value, which is characteristic of metals and highly degenerate semiconductors.  相似文献   

5.
This paper reports on comparative investigations of the structural and electrical properties of biomorphic carbons prepared from natural beech wood, as well as medium-density and high-density fiberboards, by means of carbonization at different temperatures T carb in the range 650–1000°C. It has been demonstrated using X-ray diffraction analysis that biocarbons prepared from medium-density and high-density fiberboards at all temperatures T carb contain a nanocrystalline graphite component, namely, three-dimensional crystallites 11–14 Å in size. An increase in the carbonization temperature T carb to 1000°C leads to the appearance of a noticeable fraction of two-dimensional graphene particles with the same sizes. The temperature dependences of the electrical resistivity ρ of the biomorphic carbons have been measured and analyzed in the temperature range 1.8–300 K. For all types of carbons under investigation, an increase in the carbonization temperature T carb from 600 to 900°C leads to a change in the electrical resistivity at T = 300 K by five or six orders of magnitude. The dependences ρ(T) for these materials are adequately described by the Mott law for the variable-range hopping conduction. It has been revealed that the temperature dependence of the electrical resistivity exhibits a hysteresis, which has been attributed to thermomechanical stresses in an inhomogeneous structure of the biocarbon prepared at a low carbonization temperature T carb. The crossover to the conductivity characteristic of disordered metal systems is observed at T carb ? 1000°C.  相似文献   

6.
Microstructural characteristics and amplitude dependences of the Young modulus E and of internal friction (logarithmic decrement δ) of bio-carbon matrices prepared from beech tree wood at different carbonization temperatures T carb ranging from 600 to 1600°C have been studied. The dependences E(T carb) and δ(T carb) thus obtained revealed two linear regions of increase of the Young modulus and of decrease of the decrement with increasing carbonization temperature, namely, ΔEAΔT carb and Δδ ~ BΔT carb, with A ≈ 13.4 MPa/K and B ≈ ?2.2 × 10?6 K?1 for T carb < 1000°C and A ≈ 2.5 MPa/K and B ≈ ?3.0 × 10?7 K?1 for T carb > 1000°C. The transition observed in the behavior of E(T carb) and δ(T carb) at T carb = 900–1000°C can be assigned to a change of sample microstructure, more specifically, a change in the ratio of the fractions of the amorphous matrix and of the nanocrystalline phase. For T carb < 1000°C, the elastic properties are governed primarily by the amorphous matrix, whereas for T carb > 1000°C the nanocrystalline phase plays the dominant part. The structurally induced transition in the behavior of the elastic and microplastic characteristics at a temperature close to 1000°C correlates with the variation of the physical properties, such as electrical conductivity, thermal conductivity, and thermopower, reported in the literature.  相似文献   

7.
This study investigated the effect of temperature on sulfur transformation behavior during the hydrothermal carbonization of raw sludge, water washed sludge and the corresponding filtrate solution at 110–235 °C. The different sulfur species in the various products were determined, primarily focusing on the sulfur species present in the aqueous product. At 110 °C, 31.9% of sulfur migrated to the aqueous product, primarily in the form of sulfone-S and sulfoxide-S. As the temperature increased to 160 °C, the hydrolysis of aliphatic-S and aromatic-S was enhanced, and the former species further transformed to other organic-S or SO42-S in the aqueous product. High temperature is beneficial to the formation of sulfate-S and thiophene-S/aromatic-S in the aqueous and hydrochar products, along with the release of H2S and CH3SH. This caused a retention of only 29.2% sulfur (i.e., sulfate-S) in the hydrochar at 235 °C, with a large amount of sulfur migrating to the aqueous product (51.1%), followed by the gas product (9.1%). Among all the sulfur species in raw sludge, aliphatic-S was the most thermally unstable. SO42-S and sulfur-containing gas were primarily formed from the decomposition of water-insoluble aliphatic-S, while part of thiophene-S/aromatic-S in aqueous products was generated from water-soluble sulfone-S and sulfoxide-S at high temperatures of ≥160 °C. The results indicate that 210 °C is the optimal temperature for preparing of sludge-based fuel during hydrothermal carbonization, and water washing pre-treatment is a good strategy for enhancing the removal of sulfur in hydrochar and reducing the release of sulfur-containing odorous gas.  相似文献   

8.
PtRu/carbon hybrid materials were prepared by hydrothermal carbonization using starch as carbon source and reducing agent and H2PtCl6.6H2O and RuCl3.xH2O as metal sources of the carbonization process. The materials were prepared in the following conditions: without pH adjustment, in the absence and in the presence of tetrapropylammonium chloride, and adjusting the pH using potassium hydroxide or tetrapropylammonium hydroxide. The as-synthesized materials were further treated under argon atmosphere at 900 °C and characterized by energy dispersive X-ray spectroscopy, thermogravimetric analysis, BET isotherm, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscope, and cyclic voltammetry. The electrooxidation of methanol was studied by chronoamperometry. The addition of tetrapropylammonium ion promoted an increase in surface area and total pore volume while the alkaline medium favored smaller particle sizes. The material prepared using tetrapropylammonium hydroxide showed the best electroactivity for methanol electrooxidation compared to others obtained materials.  相似文献   

9.
The synthesis conditions of refractory tantalum–zirconium carbide Ta0.8Zr0.2C on the basis of Ta2O5–ZrO2–C ultrafine initial blend prepared via the sol–gel method are explored. The initial blend is prepared via hydrolysis in the presence of Ta(OC5H11)5 and [Zr(O2C5H7)4–x (OC5H11) x ] carbon source polymer solutions, gel drying, and carbonization at a temperature of 450°C. A series of the carbothermal synthesis experiments is implemented at various temperatures and exposure times. The synthesis conditions are shown to affect not only the phase composition of products but also their oxidation resistance related to the particle size.  相似文献   

10.
The lattice parameters of Ti2O3 and (Ti0.98V0.02)2O3 have been measured as a function of temperature (24–670°C for Ti2O3 and 24–440°C for V-doped Ti2O3) from single crystal X-ray data. The high temperatures were attained by blowing hot argon directly on the crystal mounted on an automatic Philips diffractometer. This experimental set-up gives standard deviations which are at least 10 times better than those of the previous measurements and allows to keep Ti2O3 as such well above the transition. The variations of a, c, ca (hexagonal axes) for pure Ti2O3 are in agreement with the previous results. On the contrary we did not observe any transition in the unit cell volume. The V-doping seems to attenuate the transition which is visible only on the a vs T curve  相似文献   

11.
In the temperature range 100–650 K, the linear expansion coefficient β was measured for the SiC/Si biomorphic composite, a new cellular ecoceramic fabricated from a porous cellular carbon matrix prepared through pyrolysis of wood (white eucalyptus) in an argon ambient with subsequent infiltration of molten Si into the channels of the matrix and the formation of 3C-SiC. The SiC/Si samples studied had an “excess” ~30% volume concentration of Si and a porosity of ~13–15%. The measurements were conducted on samples cut along (β) and across (β) the tree growth direction. The measured values of β(T) of SiC/Si are compared with literature data available for the linear expansion coefficients of Si and 3C-SiC.  相似文献   

12.
The spectra obtained by means of Fourier spectroscopy and the assignments of the B-X lines of I2 in the vicinity of two argon ion laser lines (5145 and 5287 Å), three krypton ion laser lines (5208, 5308, and 5683 Å), and one HeNe laser line (6119 Å) are given. A detailed comparison, in the vicinity of the argon ion laser line (5145 Å), between the iodine wavenumbers calculated by means of the two sets of molecular constants previously published [Wei and Tellinghuisen, J. Mol. Spectrosc.50, 317–332 (1974); Barrow and Yee, J. C. S. Faraday II. 69, 684–700 (1973)] with those calculated from Fourier spectroscopy data, is presented.  相似文献   

13.
This study reports the effects of temperature and Ca/Na acetates addition on the transformation of nitrogen during hydrothermal carbonization of sewage sludge at 160–250 °C. The nitrogen species in the hydrochar, aqueous, oil and gas products from sludge hydrothermal carbonization at different temperatures are well characterized, with a focus on the amino acid species in various products. Temperature is found to greatly affect the nitrogen transformation during sludge hydrothermal carbonization. At 160 °C, 47.3% of nitrogen is transformed into the aqueous product. When the temperature increases to 250 °C, only 27.1% of nitrogen is retained in the hydrochar, while 69.2 and 6.7% of nitrogen is present in the aqueous and oil products, respectively. During hydrothermal carbonization, the protein-N is first converted into the polypeptide-N in the aqueous product, followed by its further decomposition into the NH+ 4-N. This leads to a high content of the NH+ 4-N in the aqueous product, especially at increased temperatures. The labile protein-N is also transformed into the heterocylic-N (especially the pyrrole-N) in the hydrochar as the temperature increases. Among all nitrogen species in the aqueous product, the polypeptide-N consisting of amino acids with the alkyl group is the most stable. Moreover, the addition of NaAc and CaAc2 reduces the nitrogen retention in the hydrochar, mainly due to enhanced hydrolysis of the protein-N. While for CaAc2 addition, the deamination of the polypeptide-N is also enhanced, leading to a higher NH+ 4-N in the aqueous product. Our results show that the type of amino acid in protein is important to determine the nitrogen transformation pathways, and acetate addition is an important strategy for enhancing nitrogen removal in the hydrochar during hydrothermal carbonization.  相似文献   

14.
The microstructure and amplitude dependences of the Young’s modulus E and internal friction (logarithmic decrement δ), and microplastic properties of biocarbon matrices BE-C(Fe) obtained by beech tree carbonization at temperatures T carb = 850–1600°C in the presence of an iron-containing catalyst are studied. By X-ray diffraction analysis and transmission electron microscopy, it is shown that the use of Fe-catalyst during carbonization with T carb ≥ 1000°C leads to the appearance of a bulk graphite phase in the form of nanoscale bulk graphite inclusions in a quasi-amorphous matrix, whose volume fraction and size increase with T carb. The correlation of the obtained dependences E(Т carb) and δ(T carb) with microstructure evolution with increasing Т carb is revealed. It is found that E is mainly defined by a crystalline phase fraction in the amorphous matrix, i.e., a nanocrystalline phase at Т carb < 1150°C and a bulk graphite phase at T carb > 1300°C. Maximum values E = 10–12 GPa are achieved for samples with Т carb ≈ 1150 and 1600°C. It is shown that the microplasticity manifest itself only in biocarbons with T carb ≥ 1300°C (upon reaching a significant volume of the graphite phase); in this case, the conditional microyield stress decreases with increasing total volume of introduced mesoporosity (free surface area).  相似文献   

15.
The surface morphology of BaF2 epitaxial films grown by MBE (molecular beam epitaxy) in various modes on the surface of CaF2/Si(100) is investigated by AFM. The CaF2 layers on Si(100) are obtained in the high-temperature growth mode (Т S = 750°C). It is shown that the epitaxy of BaF2 at a temperature of 600°C at the initial stage of growth leads to the formation of defects such as perforations in the epitaxial film, while epitaxy at a temperature of 750°C provides a defect-free film with a surface morphology suitable for the subsequent growth of semiconductors of IV–VI type and solid solutions based on them.  相似文献   

16.
The growth of a Fe sublayer 1.5–14.0 monolayers (MLs) thick and a Cu film (about 5 MLs) on this sublayer is studied at a reduced temperature (1240°C) and an elevated temperature (1400°C) of a Fe source and at a reduced temperature (900°C) of a Cu source. The films are examined by Auger electron spectroscopy, low-energy electron diffraction, and atomic force microscopy. As metal sources, thin Fe and Cu strips on a Ta foil are used. It is shown that a nonequilibrium 2D phase forms in the Fe-on-Si(001) film up to a thickness of 4–5 MLs. This phase appears as closely packed atomically smooth nanoislands. When the thickness of the film exceeds 4–5 MLs, the nonequilibrium Fe phase changes to the bulk (3D) phase of Fe and its silicide Fe x Si. At Fe source temperatures of 1240 and 1400°C, the nonequilibrium phase consists of Fe with Si segregated on the Fe surface, and a Fe-Si mixture. Copper on the nonequilibrium Fe and Fe-Si phases grows, respectively, as a smooth layer Cu with Si segregated on the top and in the form of Cu-Fe and Cu-Si mixtures. Cu islands growing on the bulk Fe and Fe x Si phases have smaller and larger sizes, respectively.  相似文献   

17.
A new high‐temperature fibre tensile cell is described, developed for use at the Advanced Photon Source at Argonne National Laboratory to enable the investigation of the carbonization and graphitization processes during carbon fibre production. This cell is used to heat precursor fibre bundles to temperatures up to ~2300°C in a controlled inert atmosphere, while applying tensile stress to facilitate formation of highly oriented graphitic microstructure; evolution of the microstructure as a function of temperature and time during the carbonization and higher‐temperature graphitization processes can then be monitored by collecting real‐time wide‐angle X‐ray diffraction (WAXD) patterns. As an example, the carbonization and graphitization behaviour of an oxidized polyacrylonitrile fibre was studied up to a temperature of ~1750°C. Real‐time WAXD revealed the gradual increase in microstructure alignment with the fibre axis with increasing temperature over the temperature range 600–1100°C. Above 1100°C, no further changes in orientation were observed. The overall magnitude of change increased with increasing applied tensile stress during carbonization. As a second example, the high‐temperature graphitizability of PAN‐ and pitch‐derived commercial carbon fibres was studied. Here, the magnitude of graphitic microstructure evolution of the pitch‐derived fibre far exceeded that of the PAN‐derived fibres at temperatures up to ~2300°C, indicating its facile graphitizability.  相似文献   

18.
Based on X-ray diffraction analysis, Auger spectroscopy, and Raman scattering, it is shown that carbonization of porous silicon at temperatures of 1200–1300°C results in formation of silicon carbide nanocrystals 5–7 nm in size. The growth of 3C-SiC nanocrystals of fixed size d proceeds as follows. Silicon nanocrystals with d = 3–7 nm pass into the liquid phase, thereby effectively participating in the growth of silicon carbide. After the size of a crystallite has achieved a critical value determined by the equality of its melting point and environmental temperature, the crystallite solidifies and virtually ceases to grow. As a result, a nanocrystalline Si-SiC-amorphous SiC heterostructure is obtained.  相似文献   

19.
H. Daniels  B. Rand  A. Brown 《哲学杂志》2013,93(27):4073-4092
Electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM) is explored as a useful characterization technique in the study of carbonization and graphitization of organic precursors. A model series of carbon materials was prepared from highly graphitizable petroleum pitch heat treated in the range 200–2730°C. Initial characterization was performed using the established techniques of X-ray diffraction (XRD), He pycnometry, TEM, electron diffraction and high-resolution lattice imaging (HREM). EELS in the TEM was then examined. Two routes are presented to quantify the change in the proportion of sp 2 type hybridization accompanying the heat treatment as the material transforms to the graphitic state. Both routes suggest an initial relative sp 2 content of ~70%, rapidly increasing to ~90% during mesophase development and carbonization, and then slowly increasing to 100% during graphitization. The peak position of the bulk valence plasmon (π?+?σ) is shown to be an excellent measure of the degree of graphitic character, and its fundamental dependence upon sample density (ρ) is confirmed. The appearance and definition of features within the core loss region representing the density of unoccupied σ* states are demonstrated to be an excellent measure of the extent of order. Finally, a method is established by which to extract the C–C bond length from core loss EELS spectra with an accuracy of ±0.1?pm. This method suggests an average bond length of 1.44?Å in samples with low heat treatment temperatures, decreasing to the theoretical length of 1.42?Å as both the heteroatom content and proportion of non-sp 2-type hybridized carbon atoms decrease.  相似文献   

20.
The effect of heptamethyldisilazane as an electrolyte stabilizer on the cycling performance of a LiMn2O4/Li cell at different rates at 30 °C and the storage performance at 60 °C is investigated systematically based on conductivity test, linear sweep voltage, electrochemical impedance spectroscopy, scanning electron microscopy, X-ray diffraction, and charge–discharge measurements. The results show that heptamethyldisilazane added into the LiPF6-based electrolyte can increase the stability of the original electrolyte; coulomb efficiency, the initial discharge capacity, and cycling performance at different rates in a sense, meanwhile, improve the storage performance at elevated temperature, although the C-rate performance of the cell is a little worse than that without heptamethyldisilazane in the electrolyte. When the LiMn2O4/Li cell with heptamethyldisilazane in the LiPF6-based electrolyte stored at 60 °C for a week cycles 300 times, the capacity retention is up to 91.18 %, which is much higher than that (87.18 %) without the additive in the electrolyte. This is mainly due to the lower solid electrolyte interface resistance (R f) in the cell, followed by the better morphology and structure of the cathode after storage at 60 °C for a week compared with the LiMn2O4/Li cell without heptamethyldisilazane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号