首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

2.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

3.
The molar heat capacity of Zn2GeO4, a material which exhibits negative thermal expansion below ambient temperatures, has been measured in the temperature range 0.5⩽(T/K)⩽400. At T=298.15 K, the standard molar heat capacity is (131.86 ± 0.26) J · K−1 · mol−1. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropy at T=298.15 K is (145.12 ± 0.29) J · K−1 · mol−1. The existence of low-energy modes is supported by the excess heat capacity in Zn2GeO4 compared to the sums of the constituent binary oxides.  相似文献   

4.
Low-temperature heat capacities of pyrimethanil laurate (C24H37N3O2) were precisely measured with an automated adiabatic calorimeter over the temperature range between T = 78 K and T = 340 K. The sample was observed to melt at (321.52 ± 0.04) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined to be (67244 ± 11) J · mol−1, (209.28 ± 0.02) J · mol−1 · K−1, (0.9943 ± 0.0004) mass fraction, respectively. The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments was (322.264 ± 0.006) K.  相似文献   

5.
A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A2[(UO2)2(MoO4)O2], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K2[(UO2)2(MoO4)O2] was determined using HF-solution calorimetry giving ΔfH° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = −(4018 ± 8) kJ · mol−1. The low-temperature heat capacity, Ср°, was measured using adiabatic calorimetry from T = (7 to 335) K for K2[(UO2)2(MoO4)O2] and from T = (7 to 326) K for Rb2[(UO2)2(MoO4)O2]. Using these Ср° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K−1 · mol−1 for K2[(UO2)2(MoO4)O2] and (390 ± 1) J · K−1 · mol−1 for Rb2[(UO2)2(MoO4)O2]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, ΔfG°, for both phases giving: ΔfG° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = (−3747 ± 8) kJ · mol−1 and ΔfG° (T = 298 K, Rb2[(UO2)2(MoO4)], cr) = −3736 ± 5 kJ · mol−1. Smoothed Ср°(Т) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T)  H°(0)] and [G°(T)  H°(0)], for both phases. The stability behaviour of various solid phases and solution complexes in the (K2MoO4 + UO3 + H2O) system with and without CO2 at T = 298 K was investigated by thermodynamic model calculations using the Gibbs energy minimisation approach.  相似文献   

6.
7.
High-temperature heat capacity measurements were obtained for Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4 using a differential scanning calorimeter. These data were combined with previously available, overlapping heat capacity data at temperatures up to 400 K and fitted to 5-parameter Maier–Kelley Cp(T) equations. Expressions for molar entropy were then derived by suitable integration of the Maier–Kelley equations in combination with recent S(298) evaluations. Finally, a database of high-temperature equilibrium measurements on the formation of these oxides was constructed and critically evaluated. Gibbs free energies of Cr2O3, FeCr2O4, and CoCr2O4 were referenced by averaging the most reliable results at reference temperatures of (1100, 1400, and 1373) K, respectively, while Gibbs free energies for ZnCr2O4 were referenced to the results of Jacob [K.T. Jacob, Thermochim. Acta 15 (1976) 79–87] at T = 1100 K. Thermodynamic extrapolations from the high-temperature reference points to T = 298.15 K by application of the heat capacity correlations gave ΔfG(298) = (−1049.96, −1339.40, −1428.35, and −1326.75) kJ · mol−1 for Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4, respectively.  相似文献   

8.
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid–liquid phase transition of the compound has been observed to be Tfus=(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be ΔfusHm=(26.273±0.013) kJ · mol−1 and ΔfusSm=(69.770±0.035) J · K−1 · mol−1. The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, ΔcU(C14H12O, s)=−(7125.56 ± 4.62) kJ · mol−1 and ΔcHm(C14H12O, s)=−(7131.76 ± 4.62) kJ · mol−1, by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, ΔfHm(C14H12O,s)=−(92.36 ± 0.97) kJ · mol−1, from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.  相似文献   

9.
The heat capacity of polycrystalline germanium disulfide α-GeS2 has been measured by relaxation calorimetry, adiabatic calorimetry, DSC and heat flux calorimetry from T = (2 to 1240) K. Values of the molar heat capacity, standard molar entropy and standard molar enthalpy are 66.191 J · K?1 · mol?1, 87.935 J · K?1 · mol?1 and 12.642 kJ · mol?1. The temperature of fusion and its enthalpy change are 1116 K and 23 kJ · mol?1, respectively. The thermodynamic functions of α-GeS2 were calculated over the range (0 ? T/K ? 1250).  相似文献   

10.
11.
To obtain reliable thermodynamic data for Na2S(s), solid-state EMF measurements of the cell Pd(s)|O2(g)|Na2S(s), Na2SO4(s)|YSZ| Fe(s), FeO(s)|O2(g)ref| Pd(s) were carried out in the temperature range 870 < T/K < 1000 with yttria stabilized zirconia as the solid electrolyte. The measured EMF values were fitted according to the equation Efit/V (±0.00047) = 0.63650  0.00584732(T/K) + 0.00073190(T/K) ln (T/K). From the experimental results and the available literature data on Na2SO4(s), the equilibrium constant of formation for Na2S(s) was determined to be lg Kf(Na2S(s)) (±0.05) = 216.28  4750(T/K)−1  28.28878 ln (T/K). Gibbs energy of formation for Na2S(s) was obtained as ΔfG(Na2S(s))/(kJ · mol−1) (±1.0) = 90.9  4.1407(T/K) + 0.5415849(T/K) ln (T/K). By applying third law analysis of the experimental data, the standard enthalpy of formation of Na2S(s) was evaluated to be ΔfH(Na2S(s), 298.15 K)/(kJ · mol−1) (±1.0) = −369.0. Using the literature data for Cp and the calculated ΔfH, the standard entropy was evaluated to S(Na2S(s), 298.15 K)/(J · mol−1 · K−1) (±2.0) = 97.0.  相似文献   

12.
The high-temperature heat capacity of zirconia was directly measured by differential scanning calorimetry between T = (1050 and 1700) K and derived from the heat content measured by transposed temperature drop calorimetry between T = (970 and 1770) K, including the monoclinic–tetragonal (m–t) phase transition region. The enthalpy and entropy of the m–t phase transition are (5.43 ± 0.31) kJ · mol−1 and (3.69 ± 0.21) J · K−1 · mol−1, respectively. Values of thermodynamic functions are provided from room temperature to 2000 K.  相似文献   

13.
14.
The low temperature heat capacity of the ZnO–CoO solid solution system was measured from 2 to 300 K using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). The thermodynamic functions in this temperature range were derived by curve fitting. The standard entropies of bulk ZnO and bulk ZnO–CoO (wurtzite, 18 mol% CoO) at T = 298.15 K were calculated to be (43.1 ± 0.4) J · mol−1 · K−1 and (45.2 ± 0.5) J · mol−1 · K−1, respectively. The surface entropy of ZnO was evaluated to be (0.02 ± 0.01) mJ · K−1 · m−2, which is essentially zero. No sharp magnetic transitions were observed in the solid solution samples. The nanophase solid solution, 12 mol% CoO, appears to bind H2O on its surface more strongly than ZnO.  相似文献   

15.
The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.  相似文献   

16.
The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid)  CaTiO3(solid), ΔG° ± 85/(J · mol?1) = ?80,140 ? 6.302(T/K); 4CaO(solid) + 3TiO2(solid)  Ca4Ti3O10(solid), ΔG° ± 275/(J · mol?1) = ?243,473 ? 25.758(T/K); 3CaO(solid) + 2TiO2(solid)  Ca3Ti2O7(solid), ΔG° ± 185/(J · mol?1) = ?164,217 ? 16.838(T/K).The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.  相似文献   

17.
Heat capacity of platinic acid, hydrogen hexahydroxyplatinate(IV)H2Pt(OH)6 , was measured from T =  7 K toT =  310 K by means of adiabatic calorimetry. The standard entropy and the standard Gibbs energy of formation of platinic acid in the crystalline state were determined to be 176.5  ±  3.6 J · K  1· mol  1and   988.8  ±  3.8 kJ · mol  1, respectively.  相似文献   

18.
Isopiestic vapor-pressure measurements were made for Rb 2SO 4(aq) from molalitym =  (0.16886 to 1.5679 )mol · kg  1atT =  298.15 K and from m =  (0.32902 to 1.2282 )mol · kg  1at T =  323.15 K, and for Cs 2SO4 (aq) from m =  (0.11213 to 3.10815 )mol · kg  1at T =  298.15 K and fromm =  (0.11872 to 3.5095 )mol · kg  1atT =  323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic information for these systems were reviewed and the isopiestic equilibrium molalities and dilution enthalpies were critically assessed and recalculated in a consistent manner. Values of the four parameters of an extended version of Pitzer`s model for osmotic and activity coefficients with an ionic-strength dependent third virial coefficient were evaluated for both systems at both temperatures, as were those of the usual three-parameter Pitzer model. Similarly, parameters of Pitzer`s model for the relative apparent molar enthalpies of dilution were evaluated at T =  298.15 K for both Rb 2SO 4(aq) and Cs 2SO 4(aq) for the more restricted range of m⩽ 0.101 mol · kg  1. Values of the thermodynamic solubility product Ks(Rb2 SO 4, cr, 298.15 K )  =  (0.1392  ±  0.0154) and the CODATA compatible standard molar Gibbs free energy of formationΔfGmo (Rb 2SO 4, cr, 298.15 K )  =   (1316.91  ±  0.59)kJ · mol  1, standard molar enthalpy of formationΔfHmo (Rb 2SO 4, cr, 298.15 K )  =   (1435.07  ±  0.60)kJ · mol  1, and standard molar entropy S mo(Rb2 SO 4, cr, 298.15 K )  =  (199.60  ±  2.88)J · K  1· mol  1were derived. A sample of one of the lots of Rb 2SO 4(s) used for part of our isopiestic measurements was analyzed by ion chromatography, and was found to be contaminated with potassium and cesium in amounts that significantly exceeded the claims of the supplier. In contrast, analysis by ion chromatography of a lot of Cs 2SO 4(s) used for some of our experiments showed it was highly pure.  相似文献   

19.
Heat capacities of 2,4-dichlorobenzaldehyde have been measured with a high-precision automatic adiabatic calorimeter over the temperature range from (79 to 371) K. The melting temperature, molar enthalpy, and entropy of fusion were determined by the heat capacity measurements to be (347.24 ± 0.13) K, (20468 ± 19) J · mol−1, and (58.94 ± 0.04) J · K−1 · mol−1, respectively. The melting temperatures for the sample and the absolutely pure compound have been obtained from fractional melting experiments to be (347.230 and 347.619) K, respectively, and the chemical purity of the sample was calculated to be 0.9921 mol fraction according to the Van't Hoff equation. Moreover, the solid-to-liquid phase transition of the substance was further investigated by using DSC technique. The results obtained from the heat capacity measurements were in agreement with those from the DSC analysis.  相似文献   

20.
Low-temperature calorimetric measurements have been performed on DyBr3(s) in the temperature range (5.5 to 420 K ) and on DyI3(s) from T=4 K to T=420 K. The data reveal enhanced heat capacities below T=10 K, consisting of a magnetic and an electronic contribution. From the experimental data on DyBr3(s) a C0p,m (298.15 K) of (102.2±0.2) J·K−1·mol−1 and a value for {S0m (298.15 K)  S0m (5.5 K)} of (205.5±0.5) J·K−1·mol−1, have been obtained. For DyI3(s), {S0m (298.15 K)  S0m (4 K)} and C0p,m (298.15 K) have been determined as (226.9±0.5) J·K−1·mol−1 and (103.4±0.2) J·K−1·mol−1, respectively. The values for {S0m (5.5 K)  S0m (0)} for DyBr3(s) and {S0m (4 K)  S0m (0)} for DyI3(s) have been calculated, giving S0m (298.15 K)=(212.3±0.9) J·K−1·mol−1 in case of DyBr3(s) and S0m (298.15 K) =(233.1±0.7) J·K−1·mol−1 for DyI3(s). The high-temperature enthalpy increment has been measured for DyBr3(s) in the temperature range (525 to 799 K) and for DyI3(s) in the temperature range (525 to 627 K). From the results obtained and enthalpies of formation from the literature, thermodynamic functions for DyBr3(s) and DyI3(s) have been calculated from T→0 to their melting temperatures at 1151.0 K and 1251.5 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号