首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
We demonstrate the homogeneous and permanent reversal of the chirality of a condensed phase by an applied electric field. Tilted chiral smectic layers exhibit a coupled polarization density and molecular orientation fields which reorient about the layer normal as couple of fixed handedness in response to small applied electric fields. Experiments on some bent-core smectics show that above a threshold field the induced rotation can occur instead about the molecular long axis and that, as a result, the handedness of the phase can be flipped. The effect is quantitatively described by a nonequilibrium dissipative model of chiral smectic dynamics with anisotropic rotational viscosities.  相似文献   

2.
The effects of matter creation on the evolution and dynamics of an anisotropic Bianchi type I space–time is investigated in the framework of open thermodynamic systems theory. For a cosmological fluid obeying a Zel'dovich type equation of state =p and with particle creation rate proportional to the square of the mean Hubble function and to the energy density of matter, respectively, the general solution of the gravitational field equations can be expressed in an exact parametric form. Generically all models start from a non-singular state. In the large time limit anisotropic cosmological models with particle creation rate proportional to the square of the Hubble function end in an isotropic flat (inflationary or non–inflationary) phase while models with particle source function proportional to the energy density of matter do not isotropize, ending in a Kasner–type geometry.  相似文献   

3.
Transformation acoustics is employed to design an acoustic bending waveguide. A two-dimensional square area with anisotropic and homogeneous material properties is transformed into a fan-shaped area with anisotropic and inhomogeneous material properties to rotate the direction of beam propagation. An alternating layered structure is considered to approximate a medium with anisotropic material properties. From the calculation results, the transformation medium can be realized by an alternating layered structure consisting of water and fluid with negative mass density. We propose that an acoustic metamaterial composed of three layers in water background can be designed to replace negative mass density fluid. The effective mass density and bulk modulus of the system that is composed of the acoustic metamaterial and water are dependent on the incident frequency and the geometric size of the acoustic metamaterial. We tune the geometric size of the acoustic metamaterial to approach the corresponding mass density distribution of the negative mass density fluid at a specific frequency. Thereby, the acoustic bending waveguide designed by using transformation acoustics can be achieved by the acoustic metamaterials.  相似文献   

4.

The phase field microelasticity theory of a three-dimensional, elastically anisotropic system of voids and cracks is proposed. The theory is based on the equation for the strain energy of the continuous elastically homogeneous body presented as a functional of the phase field, which is the effective stress-free strain. It is proved that the stress-free strain minimizing the strain energy of this homogeneous modulus body fully determines the elastic strain and displacement of the body with voids and/or cracks. The proposed phase field integral equation describing the elasticity of an arbitrary system of voids and cracks is exact. The geometry and evolution of multiple voids and/or cracks are described by the phase field, which is the solution of the time-dependent Ginzburg-Landau equation. Other defects, such as dislocations and precipitates, are trivially integrated into this theory. The proposed model does not impose a priori constraints on possible void and crack configurations or their evolution paths. Examples of computations of elastic equilibrium of systems with voids and/or cracks and the evolution of cracks under applied stress are considered.  相似文献   

5.
We have studied the features of formation and the possible stationary structures of a self-consistent magnetic field in a relativistic collisionless plasma, which are characteristic of a simple geometry of the Weibel instability that is well known in the nonrelativistic case. The universal condition is established, the growth rate is determined, and the criteria of saturation of the Weibel instability are analyzed for a broad class of anisotropic particle distribution functions (for definiteness, in application to an electron-positron plasma). A nonlinear equation of the Grad-Shafranov type describing the potential current structures is derived and its solutions are analytically studied. Special attention is paid to spatially harmonic, nonlinear current configurations with parameters determined by the properties of the initial homogeneous plasma subject to the Weibel instability. It is demonstrated that the magnetic field energy density in the obtained solutions (both harmonic and nonharmonic) can be comparable with the kinetic energy density of plasma particles.  相似文献   

6.
The authors developed a numerical method of the boundary-value problem solution in the vectorial radiative transfer theory applicable to the turbid media with an arbitrary three-dimensional geometry. The method is based on the solution representation as the sum of an anisotropic part that contains all the singularities of the exact solution and a smooth regular part. The regular part of the solution could be found numerically by the finite element method that enables to extend the approach to the arbitrary medium geometry. The anisotropic part of the solution is determined analytically by the special form of the small-angle approximation. The method development is performed by the examples of the boundary-value problems for the plane unidirectional and point isotropic sources in a turbid medium slab.  相似文献   

7.
We solve numerically the integrodifferential equation for the equilibrium case of Paveri–Fontana's Boltzmann-like traffic equation. Beside space and actual velocity, Paveri–Fontana used an additional phase space variable, the desired velocity, to distinguish between the various driver characters. We refine his kinetic equation by introducing a modified cross section in order to incorporate finite vehicle length. We then calculate from the equilibrium solution the mean-velocity–density relation and investigate its dependence on the imposed desired velocity distribution. A further modification is made by modeling the interaction as an imperfect showing-down process. We find that the velocity cumulants of the stationary homogeneous solution essentially only depend on the first two cumulants, but not on the exact shape of the imposed desired velocity distribution. The equilibrium solution can therefore be approximated by a bivariate Gaussian distribution which is in agreement with empirical velocity distributions. From the improved kinetic equation we then derive a macroscopic model by neglecting third and higher order cumulants. The equilibrium solution of the macroscopic model is compared with the cumulants of the kinetic equilibrium solution and shows good agreement, thus justifying the closure assumption.  相似文献   

8.
The paper presents an exact solution of spatially homogeneous and anisotropic cylindrically symmetric cosmological model in Barber’s second self-creation theory of gravitation in the presence of perfect fluid with pressure equal to energy density. Some physical properties of this model are also discussed.  相似文献   

9.
In an isotropic type II superconductor in a moderate magnetic field, the transition to the normal state occurs by vortex lattice melting. In certain anisotropic cases, the vortices acquire elongated cross sections and interactions. Systems of anisotropic, interacting constituents generally exhibit liquid crystalline phases. We examine the possibility of a two step melting in homogeneous type II superconductors with anisotropic superfluid stiffness from a vortex lattice into first a vortex smectic and then a vortex nematic at high temperature and magnetic field. We find that fluctuations of the ordered phase favor an instability to an intermediate smectic-A in the absence of intrinsic pinning.  相似文献   

10.
由于加速器驱动次临界堆存在外中子源,堆芯结构复杂,中子注量的各向异性严重,所以相关燃耗计算在次临界系统设计中起着重要作用。为实现次临界系统的燃耗计算,结合粒子输运程序MCNP处理复杂几何和燃耗程序LITAC处理核素全面的特点,开发了接口程序MCADS耦合MCNP和LITAC。然后选取IAEA-ADS基准题对耦合程序进行了验证计算。结果表明,燃耗、外源强度、空泡效应、初始功率分布等方面的计算结果和其他国家的计算结果相比有很好的一致性,证实了MCADS在次临界模式计算中的可靠性。  相似文献   

11.
We apply the effective medium theory combined with the conventional periodic method of moments (MoM) to analyze frequency selective surfaces (FSSs) on periodic and anisotropic substrates. Based on the effective medium theory, even periodic and anisotropic substrates can be considered homogeneous; thus, the Green’s function can be obtained. The resulting integral equation can then be solved by the MoM using rooftop basis functions and Galerkin testing functions. We analyze an example using this technique, and the numerical results agree with Fallahi’s full-vector semi-analytical method, showing an increasing difference between the results as the frequencies increase. These results show that the proposed method is effective for analyzing FSSs on periodic and anisotropic substrates.  相似文献   

12.
We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid under anisotropic pressure. Both the configurations are spherically symmetric. However, in the latter case, the physical space t?=?constant of the configurations endowed with spheroidal or pseudospheroidal geometry is assumed to be inhomogeneous. It is observed that as long as the collapse is shear-free, its evolution depends only on the mass and size of the star at the onset of collapse.  相似文献   

13.
M. Chaisi  S. D. Maharaj 《Pramana》2006,66(2):313-324
We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.  相似文献   

14.
This paper is devoted to the study of charged anisotropic exact solutions for spherical geometry in the context of modified Gauss-Bonnet gravity using the gravitational decoupling technique. We take Krori-Barua solution in the presence of charge for a spherically symmetric self-gravitating system and extend it to obtain two anisotropic solutions through some constraints. We study the stability as well as the physical viability criterion of the resulting solutions using anisotropy, squared speed of sound parameter and energy bounds. Both models turn out to be physically viable and stable as they fulfill the required energy conditions and stability criterion. We conclude that the stability of both anisotropic solutions increases with a decrease in charge.  相似文献   

15.
A continuum phase field theory and corresponding numerical solution methods are developed to describe deformation twinning in crystalline solids. An order parameter is associated with the magnitude of twinning shear, i.e., the lattice transformation associated with twinning. The general theory addresses the following physics: large deformations, nonlinear anisotropic elastic behavior, and anisotropic phase boundary energy. The theory is applied towards prediction of equilibrium phenomena in the athermal and non-dissipative limit, whereby equilibrium configurations of an externally stressed crystal are obtained via incremental minimization of a free energy functional. Outcomes of such calculations are elastic fields (e.g., displacement, strain, stress, and strain energy density) and the order parameter field that describes the size and shape of energetically stable twin(s). Numerical simulations of homogeneous twin nucleation in magnesium single crystals demonstrate fair agreement between phase field solutions and available analytical elasticity solutions. Results suggest that critical far-field displacement gradients associated with nucleation of a twin embryo of minimum realistic size are 4.5%–5.0%, with particular values of applied shear strain and equilibrium shapes of the twin somewhat sensitive to far-field boundary conditions and anisotropy of twin boundary surface energy.  相似文献   

16.
Scattering of light in an inhomogeneous fluctuating plasma is treated whose mean density distribution is given by a solution of the Korteweg-de Vries equation. The amplitude and phase correlation functions are computed for given mean density and spectral function of the density fluctuations.The non-linear effect of the mean inhomogeneous density distribution on the scattered light leads to beatings in the spectral functions of the amplitude and phase correlations. It is shown that the covariance function for the log-amplitude (which is to first order proportional to the intensity of the scattered light) can be approximated in a large L-region by a power law whose exponent is smaller than in the homogeneous case.  相似文献   

17.
We derive an exact solution to the inverse absorption problem to calculate the density distribution in spherical symmetry of absorbing particles from the intensity pattern obtained for homogeneous illumination. We illustrate the capabilities of the method by the simple example of a constant density core and find the required numerical effort to be negligible. The applicability is discussed for physical problems where unknown absorption coefficients, particle size or density distributions can be determined from multi-frequency measurements of the transmission coefficient. The applications range from targets being evaporated by laser pulses to Bok globules in astrophysics.  相似文献   

18.
The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu–Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters \(n=1, c_1=1\), determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.  相似文献   

19.
The peculiarities of the negative refraction in periodic multilayered antiferromagnet-semiconductor nanostructures are investigated in the presence of an external magnetic field parallel to the plane of the layers. Effective material tensors are obtained using method of anisotropic homogeneous medium. Dispersion and energetic relations for the mixed magnon-plasmon polaritons are investigated in the case of the Voigt geometry. Frequency regions of anomalous dispersion are found and studied in various regimes of the applied magnetic field. The necessary conditions are found under which the structure behaves as a left-handed negative-index metamaterial. Analytical expressions for the frequency-dependent phase and group refractive indices are obtained.  相似文献   

20.
We present an exact solution of the n-dimensional (n > 4) vacuum Einstein field equations with a Bianchi type I metric. The solution may be interpreted as a four-dimensional anisotropic cosmological model. The extra dimensions are related to the energy density and pressures in the model. The physics of the results is discussed at the end of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号