首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Experimental recordings of the membrane potential of stellate cells within the entorhinal cortex show a transition from subthreshold oscillations (STOs) via mixed-mode oscillations (MMOs) to relaxation oscillations under increased injection of depolarizing current. Acker et al. introduced a 7D conductance based model which reproduces many features of the oscillatory patterns observed in these experiments. For the first time, we present a comprehensive bifurcation analysis of this model by using the software package AUTO. In particular, we calculate the stable MMO branches within the bifurcation diagram of this model, as well as other MMO patterns which are unstable. We then use geometric singular perturbation theory to demonstrate how the bifurcations are governed by a 3D reduced model introduced by Rotstein et al. We extend their analysis to explain all observed MMO patterns within the bifurcation diagram. A key role in this bifurcation analysis is played by a novel homoclinic bifurcation structure connecting to a saddle equilibrium on the unstable branch of the corresponding critical manifold. This type of homoclinic connection is possible due to canards of folded node (folded saddle-node) type.  相似文献   

2.
In recent work [J. Rubin and M. Wechselberger, Biol. Cybern. 97, 5 (2007)], we explained the appearance of remarkably slow oscillations in the classical Hodgkin-Huxley (HH) equations, modified by scaling a time constant, using recently developed theory about mixed-mode oscillations (MMOs). This theory is only rigorously valid, however, for epsilon sufficiently small, where epsilon is a parameter that arises from nondimensionalization of the HH system. Here, we illustrate how the parameter regime over which MMOs exist, and the features of the MMO patterns within this regime, vary with respect to several key parameters in the nondimensionalized HH equations, including epsilon. Moreover, we explain our findings in terms of the effects that these parameters are expected to have on certain organizing structures within the corresponding flow, generalized from analysis done previously in the singular limit.  相似文献   

3.
Many neuronal systems and models display a certain class of mixed mode oscillations (MMOs) consisting of periods of small amplitude oscillations interspersed with spikes. Various models with different underlying mechanisms have been proposed to generate this type of behavior. Stochastic versions of these models can produce similarly looking time series, often with noise-driven mechanisms different from those of the deterministic models. We present a suite of measures which, when applied to the time series, serves to distinguish models and classify routes to producing MMOs, such as noise-induced oscillations or delay bifurcation. By focusing on the subthreshold oscillations, we analyze the interspike interval density, trends in the amplitude, and a coherence measure. We develop these measures on a biophysical model for stellate cells and a phenomenological FitzHugh-Nagumo-type model and apply them on related models. The analysis highlights the influence of model parameters and resets and return mechanisms in the context of a novel approach using noise level to distinguish model types and MMO mechanisms. Ultimately, we indicate how the suite of measures can be applied to experimental time series to reveal the underlying dynamical structure, while exploiting either the intrinsic noise of the system or tunable extrinsic noise.  相似文献   

4.
Mixed mode oscillations (MMOs) occur when a dynamical system switches between fast and slow motion and small and large amplitude. MMOs appear in a variety of systems in nature, and may be simple or complex. This focus issue presents a series of articles on theoretical, numerical, and experimental aspects of MMOs. The applications cover physical, chemical, and biological systems.  相似文献   

5.
We studied the dynamics of a prototypical electrochemical model, the electro-oxidation of hydrogen in the presence of poisons, under galvanostatic conditions. The lumped system exhibits relaxation oscillations, which develop mixed-mode oscillations (MMOs) for low preset currents. A fast-slow analysis of the homogeneous dynamics reveals that the MMOs arise from a fast oscillating subsystem and a one-dimensional slow manifold. In the spatially extended system, the galvanostatic constraint imposes a synchronizing global coupling that drives the system into cluster patterns. The properties of the cluster patterns (CPs) result from an intricate interplay of the nature of the local oscillators, the global constraint, and a nonlocal coupling through the electrolyte. In particular, we find that the global constraint suppresses small-amplitude oscillations of MMOs and prevents domains oscillating out of phase from occupying equal regions in phase space. The nonlocal coupling causes each individual clustered region to oscillate on a different limit cycle. Typically multistability of CPs is found. Coexisting patterns possess different oscillation periods and a different total fraction in space that occupies the in-phase or out-of-phase state, respectively.  相似文献   

6.
Recurrence gives powerful tools to investigate the statistical properties of dynamical systems. We present in this paper some applications of the statistics of first return times to characterize the mixed behavior of dynamical systems in which chaotic and regular motion coexist. Our analysis is local: we take a neighborhood A of a point x and consider the conditional distribution of the points leaving A and for which the first return to A, suitably normalized, is bigger than t. When the measure of A shrinks to zero the distribution converges to the exponential e(-t) for almost any point x, if the system is mixing and the set A is a ball or a cylinder. We consider instead a system, a skew integrable map of the cylinder, which is not ergodic and has zero entropy. This map describes a shear flow and has a local mixing property. We rigorously prove that the statistics of first return is of polynomial type around the fixed points and we generalize around other points with numerical computations. The result could be extended to quasi-integrable area preserving maps such as the standard map for small coupling. We then analyze the distribution of return times in a region which is composed by two invariants subdomains: one with a mixing dynamics and the other with an integrable dynamics given by our shear flow. We show that the statistics of first return in this mixed region is asymptotically given by the exponential law, but this limit is attained by an intermediate regime where exponential and polynomial laws are linearly superposed and weighted by some factors which are proportional to the relative sizes of the chaotic and regular regions. The result on the statistics of first return times for mixed regions in the phase space can provide a basis to analyze such a property for area preserving maps in mixed regions even when a rigorous result is not available. To this end we present numerical investigations on the standard map which confirm the results of the model.  相似文献   

7.
We analyse a piecewise-linear FitzHugh–Nagumo model. The system exhibits a canard near which both small amplitude and large amplitude periodic orbits exist. The addition of small noise induces mixed-mode oscillations (MMOs) in the vicinity of the canard point. We determine the effect of each model parameter on the stochastically driven MMOs. In particular we show that any parameter variation (such as a modification of the piecewise-linear function in the model) that leaves the ratio of noise amplitude to time-scale separation unchanged typically has little effect on the width of the interval of the primary bifurcation parameter over which MMOs occur. In that sense, the MMOs are robust. Furthermore, we show that the piecewise-linear model exhibits MMOs more readily than the classical FitzHugh–Nagumo model for which a cubic polynomial is the only nonlinearity. By studying a piecewise-linear model, we are able to explain results using analytical expressions and compare these with numerical investigations.  相似文献   

8.
Asymptotic chaos     
We provide in table I a list of normal forms of ordinary differential equations describing the dynamics of physical systems in conditions near to the simultaneous onset of up three instabilities. The first (quadratic) terms in the Taylor series for the nonlinear terms in these amplitude equations (as they are called in fluid dynamics) are given in each case. We focus on a particular example involving three instabilities and derive an asymptotic version of the corresponding normal form as a limit of small dissipation is approached. The numerical investigation of this asymptotic normal form strongly suggests that chaotic behavior occurs as close as one wants to the onset of the triple instability. This chaotic behavior is also exhibited by a return map constructed by direct numerical experiments on the amplitude equation. We also derive by analytic methods a model return map that qualitatively reproduces much of the dynamics observed numerically in the solutions of the asymptotic normal form in nearly homoclinic conditions. In the limit of strong contraction, this model map of the plane reduces to a unidimensional map that is valuable in understanding the dynamics of the original system.  相似文献   

9.
In the nervous system many behaviorally relevant dynamical processes are characterized by episodes of complex oscillatory states, whose periodicity may be expressed over multiple temporal and spatial scales. In at least some of these instances the variability in oscillatory amplitude and frequency can be explained in terms of deterministic dynamics, rather than being purely noise-driven. Recently interest has increased in studying the application of mixed-mode oscillations (MMOs) to neurophysiological data. MMOs are complex periodic waveforms where each period is comprised of several maxima and minima of different amplitudes. While MMOs might be expected to occur in brain kinetics, only a few examples have been identified thus far. In this article, we review recent theoretical and experimental findings on brain oscillatory rhythms in relation to MMOs, focusing on examples at the single neuron level but also briefly touching on possible instances of the phenomenon across local and global brain networks.  相似文献   

10.
Folded nodes occur in generic slow-fast dynamical systems with two slow variables. Open regions of initial conditions flow into a folded node in an open set of such systems, so folded nodes are an important feature of generic slow-fast systems. Twisting and linking of trajectories in the vicinity of a folded node have been studied previously, but their consequences for global dynamical behavior have hardly been investigated. One manifestation of the twisting is as "mixed mode oscillations" observed in chemical and neural systems. This paper presents the first systematic numerical study of return maps for trajectories that flow through a region with a folded node. These return maps are approximated by rank-1 maps, and the local twisting of trajectories near a folded node gives rise to multiple turning points in the approximating one dimensional maps. A variant of the forced van der Pol system is used here to illustrate that folded nodes can be a "chaos-generating" mechanism. Folded saddle-nodes occur in generic one-parameter families of slow-fast dynamical systems with two slow variables. These bifurcations give birth to folded nodes. Numerical simulations demonstrate that return maps of systems that are close to a folded saddle-node can be even more complex than those of folded nodes that are far from folded saddles.  相似文献   

11.
We demonstrate with a minimal example that in Filippov systems (dynamical systems governed by discontinuous but piecewise smooth vector fields) stable periodic motion with sliding is not robust with respect to stable singular perturbations. We consider a simple dynamical system that we assume to be a quasi-static approximation of a higher-dimensional system containing a fast stable subsystem. We tune a system parameter such that a stable periodic orbit of the simple system touches the discontinuity surface: this is the so-called grazing-sliding bifurcation. The periodic orbit remains stable, and its local return map becomes piecewise linear. However, when we take into account the fast dynamics the local return map of the periodic orbit changes qualitatively, giving rise to, for example, period-adding cascades or small-scale chaos.  相似文献   

12.
A detailed study of a generic model exhibiting new type of mixed-mode oscillations is presented. Period doubling and various period adding sequences of bifurcations are observed. New type of a family of 1D (one-dimensional) return maps is found. The maps are discontinuous at three points and consist of four branches. They are not invertible. The model describes in a qualitative way mixed-mode oscillations with two types of small amplitude oscillations at local maxima and local minima of large amplitude oscillations, which have been observed recently in the Belousov-Zhabotinsky system. (c) 2000 American Institute of Physics.  相似文献   

13.
Recent studies of a firing rate model for neural competition as observed in binocular rivalry and central pattern generators [R. Curtu, A. Shpiro, N. Rubin, J. Rinzel, Mechanisms for frequency control in neuronal competition models, SIAM J. Appl. Dyn. Syst. 7 (2) (2008) 609-649] showed that the variation of the stimulus strength parameter can lead to rich and interesting dynamics. Several types of behavior were identified such as: fusion, equivalent to a steady state of identical activity levels for both neural units; oscillations due to either an escape or a release mechanism; and a winner-take-all state of bistability. The model consists of two neural populations interacting through reciprocal inhibition, each endowed with a slow negative-feedback process in the form of spike frequency adaptation. In this paper we report the occurrence of another complex oscillatory pattern, the mixed-mode oscillations (MMOs). They exist in the model at the transition between the relaxation oscillator dynamical regime and the winner-take-all regime. The system distinguishes itself from other neuronal models where MMOs were found by the following interesting feature: there is no autocatalysis involved (as in the examples of voltage-gated persistent inward currents and/or intrapopulation recurrent excitation) and therefore the two cells in the network are not intrinsic oscillators; the oscillations are instead a combined result of the mutual inhibition and the adaptation. We prove that the MMOs are due to a singular Hopf bifurcation point situated in close distance to the transition point to the winner-take-all case. We also show that in the vicinity of the singular Hopf other types of bifurcations exist and we construct numerically the corresponding diagrams.  相似文献   

14.
Fang Yuan 《中国物理 B》2021,30(12):120514-120514
Continuous-time memristor (CM) has been widely used to generate chaotic oscillations. However, discrete memristor (DM) has not been received adequate attention. Motivated by the cascade structure in electronic circuits, this paper introduces a method to cascade discrete memristive maps for generating chaos and hyperchaos. For a discrete-memristor seed map, it can be self-cascaded many times to get more parameters and complex structures, but with larger chaotic areas and Lyapunov exponents. Comparisons of dynamic characteristics between the seed map and cascading maps are explored. Meanwhile, numerical simulation results are verified by the hardware implementation.  相似文献   

15.
Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115–132, 1984).  相似文献   

16.
We prove that the distributional limit of the normalised number of returns to small neighbourhoods of periodic points of certain non-uniformly hyperbolic dynamical systems is compound Poisson. The returns to small balls around a fixed point in the phase space correspond to the occurrence of rare events, or exceedances of high thresholds, so that there is a connection between the laws of Return Times Statistics and Extreme Value Laws. The fact that the fixed point in the phase space is a repelling periodic point implies that there is a tendency for the exceedances to appear in clusters whose average sizes is given by the Extremal Index, which depends on the expansion of the system at the periodic point. We recall that for generic points, the exceedances, in the limit, are singular and occur at Poisson times. However, around periodic points, the picture is different: the respective point processes of exceedances converge to a compound Poisson process, so instead of single exceedances, we have entire clusters of exceedances occurring at Poisson times with a geometric distribution ruling its multiplicity. The systems to which our results apply include: general piecewise expanding maps of the interval (Rychlik maps), maps with indifferent fixed points (Manneville-Pomeau maps) and Benedicks-Carleson quadratic maps.  相似文献   

17.
For hamiltonian systems with two degrees of freedom a mechanism accounting for the divergence of perturbation series and the asymptotic relation between true and formal dynamics is proposed. In the special case of conservative quadratic maps numerical and analytical support is given for a piecewise geometric structure of the Birkhoff series, that is a sequence of pseudoconvergence radii is found which decreases to zero and is associated with the resonances approaching the rotation angle of the linear map.  相似文献   

18.
This paper presents a unified framework for performing local analysis of grazing bifurcations in n-dimensional piecewise-smooth systems of ODEs. These occur when a periodic orbit has a point of tangency with a smooth (n−1)-dimensional boundary dividing distinct regions in phase space where the vector field is smooth. It is shown under quite general circumstances that this leads to a normal-form map that contains to lowest order either a square-root or a (3/2)-type singularity according to whether the vector field is discontinuous or not at the grazing point. In particular, contrary to what has been reported in the literature, piecewise-linear local maps do not occur generically. First, the concept of a grazing bifurcation is carefully defined using appropriate non-degeneracy conditions. Next, complete expressions are derived for calculating the leading-order term in the normal form Poincaré map at a grazing bifurcation point in arbitrary systems, using the concept of a discontinuity mapping. Finally, the theory is compared with numerical examples including bilinear oscillators, a relay feedback controller and general third-order systems.  相似文献   

19.
The presence of focus–focus singularities in semi-toric integrables Hamiltonian systems is one of the reasons why there cannot exist global Action–Angle coordinates on such systems. At focus–focus critical points, the Liouville–Arnold–Mineur theorem does not apply. In particular, the affine structure of the image of the moment map around has non-trivial monodromy. In this article, we establish that the singular behavior and the multi-valuedness of the Action integrals is given by a complex logarithm. This extends a previous result by San Vũ Ngọc to any dimension. We also calculate the monodromy matrix for these systems.  相似文献   

20.
Systems of strongly coupled chaotic maps generically exhibit collective behavior emerging out of extensive chaos. We show how the well-known renormalization group (RG) of unimodal maps can be extended to the coupled systems, and in particular to coupled map lattices (CMLs) with local diffusive coupling. The RG relation derived for CMLs is nonperturbative, i.e., not restricted to a particular class of configurations nor to some vanishingly small region of parameter space. After defining the strong-coupling limit in which the RG applies to almost all asymptotic solutions, we first present the simple case of coupled tent maps. We then turn to the general case of unimodal maps coupled by diffusive coupling operators satisfying basic properties, extending the formal approach developed by Collet and Eckmann for single maps. We finally discuss and illustrate the general consequences of the RG: CMLs are shown to share universal properties in the space-continuous limit which emerges naturally as the group is iterated. We prove that the scaling properly ties of the local map carry to the coupled systems, with an additional scaling factor of length scales implied by the synchronous updating of these dynamical systems. This explains various scaling laws and self-similar features previously observed numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号