共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system 总被引:4,自引:0,他引:4
Yun LiuCheng-Liang Deng Jing ZhaoJun-Sheng Wang Li ChenYu-Zhong Wang 《Polymer Degradation and Stability》2011,96(3):363-370
In order to solve the “candlewick effect” caused by glass fibers, which results in the decrease of flame retardancy of flame-retardant long-glass-fiber-reinforced polypropylene (LGFPP) systems, and the deterioration of mechanical properties caused by adding an additional amount of flame retardants compared with flame-retardant non-glass-fiber-reinforced polypropylene systems so as to keep a same flame retardancy, a novel intumescent flame retardant (IFR) system, which is composed of a charring agent (CA), ammonium polyphosphate (APP) and organically-modified montmorillonite (OMMT), was used to flame retard LGFPP. The thermal stability, combustion behavior, char formation, flame retardant mechanism and mechanical properties of the IFR-LGFPP samples were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 test, cone calorimeter test, scanning electronic microscopy, and mechanical property tests. When the content of IFR is 20 wt%, the LOI value of IFR-LGFPP reaches 31.3, and the vertical burning test reaches UL-94 V-0 rating, solving the “candlewick effect” caused by long glass fiber without additional amount of the IFR. All the relevant cone calorimeter parameters also show that IFR-LGFPP has much better flame-retardant behaviors than LGFPP. Furthermore, the mechanical properties of IFR-LGFPP almost remain unchanged in comparison with those of LGFPP containing no IFR. The flame retardant mechanism was also discussed. 相似文献
2.
The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites 总被引:2,自引:0,他引:2
Hongjiao Lin Hong Yan Bo Liu Liqiao Wei Bingshe Xu 《Polymer Degradation and Stability》2011,96(7):1382-1388
Ammonium polyphosphate (APP)/polypropylene (PP) composites were prepared by melt blending and extrusion in a twin-screw extruder. APP was first modified by a silane coupling agent KH-550 then added to polypropylene. The surface modification of APP by the coupling agent decreased its water solubility and its interface compatibility with the PP matrix. Limiting oxygen index (LOI) and thermogravimetric analysis (TGA) were used to characterize the flame retardant property and the thermal stability of the composites. The addition of APP improved the flame retardancy of PP remarkably. The crystal structures of APP/PP composites were characterized by X-ray diffraction (XRD). The results indicated that β-crystal phase PP may be formed. The structures and morphologies of APP, KH-550/APP and APP/PP composites were characterized by field-emission scanning electron microscope (FESEM). The mechanical property tests showed good mechanical properties of composite materials. Compared with unmodified one, the impact strength, tensile strength and elongation of modified APP/PP were all improved. 相似文献
3.
In this work, based on castor oil (CO), flame retardant polyurethane sealants (FRPUS) with ammonium polyphosphate (APP) and aluminum hypophosphite (AHP) were prepared. The synergistic flame retardant effects between APP and AHP on flame retardancy, thermal stability, and flame retardant mechanisms of FRPUS were investigated. It was found that when the mass ratio of APP and AHP was 5:1, the limiting oxygen index (LOI) value of FRPUS increased to 35.1%, In addition, at this ratio, the parameters from cone calorimeter testing (CCT) were reduced; these parameters include peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR) and total smoke production (TSP). The thermal decomposition behavior of the FRPUS was investigated by thermogravimetric analysis (TGA). The results showed that AHP improved the thermal stability of the PUS/APP system and increased char residue at high temperatures. Moreover, the residual carbon was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM), gas phase pyrolysis products were investigated by thermogravimetric analysis/infrared spectrometry (TG-IR) and thermogravimetric analysis/mass spectrometry (TG-MS). It was observed that the flame retardant mechanisms of the APP/AHP system was the combination of gas and condensed phase flame retardant mechanisms. 相似文献
4.
This work aims to evaluate the efficiency of halloysite as synergistic agent in an intumescent PP system based on a coated ammonium polyphosphate (IFR). The first part of the study analyses the thermal stability and fire performance of PP when using the intumescent formulation alone or in combination with the aluminosilicate nanotubes (HNTs). Cone calorimetry reveals that partial substitution of IFR by HNTs (3 wt.%) imparts substantial improvement in flame retardancy with reduced heat release rate and longer burning times. Additionally, a shift from V-1 to V-0 classification is achieved at the UL-94 test with only 1.5 wt.% HNTs. The second part provides a better understanding of the physical and chemical mechanisms of action of HNTs in the intumescent systems. The chemical evolution of the condensed phase during combustion is described by solid state NMR, and in particular using 2D NMR. Results indicate that halloysite speeds up the development of the intumescent shield, but also enhances its mechanical properties by physical reinforcement (i.e. aluminosilicate “skeleton-frame” for the phospho-carbonaceous structure) and/or by chemical interactions with IFR yielding to aluminophosphates. These new chemical species allow thermal stabilization of the char at high temperatures and provide good macro- and micro-structural properties. Both effects increase the mechanical strength of the protective layer during burning ensuring excellent heat and mass transfer limitations between gas and condensed phases. 相似文献
5.
Simone P.S. Ribeiro Celeste Pereira Regina S.V. Nascimento 《Polymer Degradation and Stability》2009,94(3):421-431
A natural Brazilian montmorillonite clay was submitted to organophilization treatments to evaluate the effect of these treatments on the flame retardancy potential of polymer composites containing an intumescent ammonium polyphosphate and pentaerythritol formulation. An ethylene-butyl acrylate copolymer was used as the polymer matrix. Natural or organophilic clays were added both to the pure polymer and to the polymer containing the intumescent mixture. The influence of these mineral fillers, and of their organophilization treatments, on flame retardancy was investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 rating standard, heating microscopy, rheological measurements and cone calorimetry. The results show that these inorganic additives have a synergistic effect on composites containing the intumescent formulation. 相似文献
6.
Zhanguang Huang 《Polymer Degradation and Stability》2007,92(7):1193-1198
The hyperbranched polyphosphate acrylate (HPPA) was blended in different ratios with tri(acryloyloxyethyl) phosphate (TAEP) to obtain a series of UV curable intumescent flame retardant resins. The thermal degradation mechanism of their cured films in air was studied by thermogravimetric analysis and in situ Fourier-transform infrared spectroscopy. The results showed that the addition of HPPA reduced the initial decomposition temperature (Tdi) but increased the char residue. Moreover, the decomposition was considered to be divided into three stages: firstly the degradation of phosphate group, secondly ester group and finally alkyl chain. The morphological structure of the formed char was observed by scanning electron microscopy, demonstrating the formation mechanism of the intumescent charred crust. 相似文献
7.
The effects of magnesium oxide(Mg O) on the flame retardant performance of intumescent systems based on ammonium polyphosphate(APP) and pentaerythritol(PER) in ethylene vinyl acetate copolymer(EVA) were studied. The results showed that Mg O affects both the quality and quantity of residual char. There is an optimal value for the loading amount of Mg O. More or less Mg O loading may cause the formation of defective char layers and worsen the flame retardancy of EVA. According to the results of limiting oxygen index(LOI), vertical flammability test(UL94 rating) and cone calorimetry(CONE), the best flame retardancy with a strong and well intumescent char is obtained from the sample with 1 wt% of Mg O, which has the highest LOI value of 27.9, UL94 rating of V-0 and the lowest peak heat release rate of 242 k W·m?2. 相似文献
8.
Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene 总被引:6,自引:0,他引:6
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA. 相似文献
9.
Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate 总被引:4,自引:0,他引:4
Jun-Sheng Wang Hai-Bo Zhao De-Yi Wang Yu-Zhong Wang 《Polymer Degradation and Stability》2009,94(4):625-631
A series of intumescent flame-retardant epoxy resins (IFR-EPs) were prepared only by adding a 5 wt% total loading of ammonium polyphosphate (APP) and metal compounds. All the samples could achieve V-0 rating and did not generate dripping during UL-94 testing. The limiting oxygen index (LOI) values of the samples with 4.83 wt% APP and 0.17 wt% CoSA increase from 27.1 to 29.4, compared with epoxy resin containing 5 wt% APP. The samples also showed excellent water resistance of flame retardancy in 30 °C and 70 °C water for 168 h. The LOI results show that the composition of metal compounds (metal ions and ligands/anions) and the mass ratios of APP to metal compounds affect the flame retardancy of the samples. TG results indicate that the catalytic effect of CoSA on the decomposition of both APP and the epoxy resins containing APP is better than that of CuSAO. The fire behavior of epoxy resin and epoxy resins containing APP with/without CoSA were investigated by cone calorimeter. Cone calorimeter parameters of the samples such as HRR, THR, TSP and COP indicate that the addition of APP and CoSA improves the fire safety of epoxy resin significantly, and CoSA shows an obvious catalytic effect. 相似文献
10.
Nizar Didane Stéphane Giraud Eric Devaux Guillaume Lemort 《Polymer Degradation and Stability》2012,97(3):383-391
This paper deals with the fire behaviour of poly (ethylene terephthalate) (PET) filled with Exolit OP950, a zinc phosphinate fire retardant, and three polyhedral oligomeric silsesquioxanes (POSS) having different chemical structures. Regardless of the POSS type, intumescence occurs during combustion, but the insulation properties of the chars produced are different. Best reductions on total heat evolved (THE) and on cumulative CO2 with no increase in CO emissions are observed when dodecaphenyl POSS is used. This may be related to its thermal degradation pathway, releasing via this process volatile organic species contributing on intumescence and producing an effective protective layer having a foliated structure. 相似文献
11.
A novel hyperbranched polyamine charring agent (HPCA), a derivative of triazines, was synthesized and well characterized by 1H NMR and FTIR. HPCA and ammonium polyphosphate (APP) were added into polylactide (PLA) resin as an intumescent flame retardant (IFR) system to impart flame retardancy and dripping resistance to PLA. The flammability and thermal stability of IFR-PLA composites were investigated by limiting oxygen index (LOI), UL-94 vertical burning, cone calorimetry and thermogravometric analysis (TGA) tests. The results showed that the IFR system had both excellent flame retardant and anti-dripping abilities for PLA. The TGA curves suggested that HPCA has good ability of char formation and when combined with APP, would induce synergistic effect which could be clearly observed. This effect greatly promoted the char formation of IFR-PLA composites, hence improved the flame retardant property. Additionally, the structure and morphology of char residues were studied by XPS, FTIR and SEM. 相似文献
12.
Flame retardant properties and mechanism of an efficient intumescent flame retardant PLA composites 下载免费PDF全文
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
In this study, piperazine-modified ammonium polyphosphates(PA-APPs) with hierarchical structure were synthesized through ion exchange reaction. ~1H nuclear magnetic resonance(~1H-NMR), Fourier transform infrared spectra(FTIR), elemental analysis(EA), and inductively coupled plasma atomic emission spectroscopy(ICP-AES) confirmed that the PA-APPs with different structures were prepared successfully. Then these flame retardants were used alone as monocomponent intumescent flame retardant for low-density polyethylene(LDPE). Combustion tests demonstrated that the flameretardant efficiency of PA-APP containing about 7 wt% carbon(PA-APP_7) was significantly higher than that of the other PAAPPs with more or less carbon. The flame-retarded LDPE system with 30 wt% PA-APP_7 passed the UL-94 V-0 rating, and had the oxygen index(LOI) of 33.0%. Thermal analysis illustrated that the thermal decomposition behavior of PA-APP changed with incorporating different contents of PA. For all these PA-APPs, PA-APP_7 showed higher thermal stability than the other PA-APP flame retardants. All the experimental results proved that PA-APP_7 could reach the balance of an acid source, a blowing source, and a charring source as a mono-component intumescent flame retardant for LDPE. Further, it led to the formation of a compact intumescent char layer containing the structures of rich P―O―P, P―N―C, C=C, etc. during burning which in turn resulted in the excellent flame-retardant efficiency of PA-APP_7. 相似文献
14.
Synergistic effect of decabromodiphenyl ethane and montmorillonite on flame retardancy of polypropylene 总被引:4,自引:0,他引:4
Xiao-Sui Chen Zhong-Zhen Yu Wei Liu Sheng Zhang 《Polymer Degradation and Stability》2009,94(9):1520-1525
Polypropylene (PP) is melt-compounded in a twin-screw extruder with surface-modified decabromodiphenyl ethane/antimony trioxide (DBDPE/Sb2O3) and organically modified montmorillonite (OMMT). The intercalation and dispersion microstructure of OMMT in the nanocomposites are investigated by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Thermal stability and char residue are characterized by thermogravimetric and differential thermal analysis (TGA–DTA). Flame retardant properties are evaluated by limited oxygen index (LOI) and UL-94 vertical burning test.The results indicate that better flame retardancy can be achieved for the composite containing a modified mixture DBDPE/Sb2O3. The presence of DBDPE/Sb2O3 could improve the dispersion of OMMT in polypropylene, leading to higher thermal stability and more char residue. A synergistic effect between OMMT and DBDPE/Sb2O3 has been observed and discussed. 相似文献
15.
Jianjun ZhangQuan Ji Xiuhong ShenYanzhi Xia Liwen TanQingshan Kong 《Polymer Degradation and Stability》2011,96(5):936-942
Intrinsically flame-retardant calcium alginate fibre was prepared by wet spinning and its pyrolysis products and thermal degradation mechanism studied. Combustion behaviour and flammability were assessed using the limiting oxygen index (LOI) and cone calorimetry. LOI results showed that calcium alginate fibre was intrinsically flame retardant with LOI value of 48.0, as compared to about 20.0 for viscose fibre. Cone calorimetry indicated that heat release rate and total heat release values of intrinsically flame-retardant fibre were significantly less than those of viscose fibre. It also shown that intrinsically flame-retardant fibre combustion produced greater quantities of residues than did viscose fibre combustion. Combustion residues were examined using scanning electron microscopy, indicating that calcium alginate fibre produced consistent, thick residue crusts. Pyrolysis was investigated using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) which showed that cracking products produced from calcium alginate fibres combustion were less than those in viscose fibre combustion, and pyrolysis of the intrinsically flame-retardant fibre was incomplete. Thermogravimetric analysis (TG) indicated that calcium alginate fibre generated more residues containing carbonaceous char and calcium carbonate, as compared with viscose fibre. We propose a condensed phase mechanism for the calcium alginate fibre flame-retardancy effect. 相似文献
16.
Fouad Laoutid Olivier PersenaireLeila Bonnaud Philippe Dubois 《Polymer Degradation and Stability》2013
The influence of the incorporation of polyamide-6 (PA) and natural sepiolite nanoparticles on both the thermal degradation and fire behaviour of polypropylene (PP) matrix has been investigated by thermogravimetric analysis (TGA) and mass loss calorimetry. For that purpose, PP/PA blends and nanocomposites thereof were prepared by melt processing. TGA results evidenced that the use of maleic anhydride grafted-polypropylene (MA-g-PP) as compatibilizer led to a significant improvement in thermal stability under air. Such improvement was linked to the formation of a char layer preventing the thermo-oxidative degradation of PP. Interestingly, the thermal resistance of this char layer was further improved by adding 5 wt% of natural sepiolite leading to important increase of time to ignition and reduction of peak of heat release rate (pHRR) during mass loss calorimeter test. 相似文献
17.
The fire retardancy mechanisms of aluminium diethylphosphinate in combination with melamine polyphosphate and zinc borate was analysed in glass-fibre reinforced polyamide 6,6. The influence of phosphorus compounds on the polyamide decomposition pathways was characterized using thermal analysis (TG), evolved gas analysis (TG-FTIR), and FTIR-ATR analysis of the residue. The Lewis acid-base interactions between the flame retardants, the amide unit, and the metal ions control the decomposition. The flammability (LOI, UL 94) and performance under forced-flaming conditions (cone calorimeter using different irradiations) were investigated. Fire residues were analysed with FTIR-ATR, SEM-EDX, and NMR. Aluminium phosphinate in polyamide 6,6 acts mainly by flame inhibition. Melamine polyphosphate shows some fuel dilution and a significant barrier effect. Using a combination of aluminium phosphinate and melamine polyphosphate results in some charring and a dominant barrier effect. These effects are improved in the presence of zinc borate due to the formation of boron-aluminium phosphates instead of aluminium phosphates. 相似文献
18.
A novel phosphorus-containing compound, poly(2-hydroxy propylene spirocyclic pentaerythritol bisphosphonate) (PPPBP) has been proved to be an excellent flame retardant for polyethylene terephthalate (PET) fabrics. In order to understand its flame retardant mode, FT-IR and XPS are used to investigate the char-forming mechanism of PPPBP. FT-IR spectra results show that with the increase of temperature, P-O-C group of PPPBP breaks down gradually, and species containing CC double bond appear. XPS spectra indicate that PPPBP produces phosphoric or polyphosphoric acid during thermo-decomposition. In the high temperature range (>400 °C), CC and phosphorus-containing complexes become the major components of the charred residue of PPPBP. Data of XPS and FT-IR spectra give positive evidence that PPPBP yields high amount of carbonaceous chars by producing phosphoric or polyphosphoric acid, which inhibit the oxidation of carbon atoms, and simultaneously impel the formation of carbon and species containing carbon double bond with outstanding heat resistance. 相似文献
19.
Congrui Qi Bihe Yuan Haoran Dong Kaiyuan Li Sheng Shang Yaru Sun Gongqing Chen Yuanyuan Zhan 《先进技术聚合物》2020,31(5):1099-1109
In order to improve its water resistance and compatibility with polymer matrix, ammonium polyphosphate (APP) is modified with melamine‐trimesic acid (MEL‐TA) aggregates by supramolecular self‐assembly technology. Chemical structure and morphology of APP@MEL‐TA are investigated by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM), respectively. Intumescent flame retardant system of APP@MEL‐TA and charring‐foaming agent is introduced into polypropylene (PP) matrix. The flammability and combustion behavior of PP composites are investigated by limiting oxygen index (LOI), UL‐94 vertical burning, and cone calorimetry tests. In terms of LOI values and cone combustion results, APP@MEL‐TA performs better than pristine APP. Char residue of PP composites is investigated by SEM and Raman spectra. Flame retardant mechanisms are proposed based on thermal decomposition, combustion results, and analysis on char residue. 相似文献
20.
Synthesis, application and flame retardancy mechanism of a novel flame retardant containing silicon and caged bicyclic phosphate for polyamide 6 总被引:1,自引:0,他引:1
A novel flame retardant containing silicon and caged bicyclic phosphate groups, tri(2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-1-oxo-4-hydroxymethyl) phenylsilane (TPPSi) was successfully synthesized. The chemical structure of TPPSi was characterized by FTIR, 1H NMR and 31P NMR. The application of TPPSi (25 wt%) as a flame retardant in polyamide 6 (PA6) not only gains satisfied flame retardancy and smoke suppression, but also retains the high toughness and inherent appearance of pure PA6. The influence of TPPSi on the decomposition pathway of PA6 was discussed based on TG-FTIR and FTIR analysis. The interaction between TPPSi and PA6 at high temperature alters the decomposition pathway of PA6 resulting in the formation of the residue containing phosphorus and silicon. The heat and smoke release behaviors at different external heat fluxes were measured by cone calorimeter, and the fire residue was analyzed by SEM-EDX. The condensed phase action resulting from the barrier effect of residue is proposed to be the major flame retardancy mechanism of TPPSi in PA6, with the fuel reduction action as the minor. 相似文献