首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

2.
Melamine polyphosphate (MPP) and halloysite nanotubes (HNT) were introduced to polyamide 6 (PA6) by melt blending in order to improve the fire resistance. PA6 composite containing 12% flame retardants with good spinnability was obtained. The flammability of PA6 composite was characterized by limiting oxygen index (LOI), UL‐94 vertical burning and cone calorimeter (CONE) tests. The results indicated that the LOI value could reach 24.0 vol.% and UL‐94 rating could achieve V2 level at the presence of 12% flame retardants. CONE data demonstrated that peak heat release rate was significantly reduced from 554 kW/m2 of neat PA6 to 368 kW/m2 of the sample containing flame retardants. Thermal analysis indicated that the thermal stability and char formation were improved by the presence of flame retardants. The morphology of residue char was characterized by scanning electron microscopy; and it suggested that a network‐structured protective char layer had been formed. The possible synergism between MPP/HNT and their flame retardant mechanism was also analyzed and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Organically modified montmorillonite (OMMT) was used as synergist to enhance the flame-retardant and mechanical properties of poly(butylene succinate)/intumescent flame retardant (PBS/IFR) composites. The flame-retardant, thermal degradation and combustion properties of PBS and its flame-retardant composites were characterized by limiting oxygen index (LOI) test, vertical burning (UL-94) test, thermogravimetric analysis, cone calorimeter and scanning electron microscopy, respectively. The results indicate that PBS/IFR composites exhibit excellent flame retardance when OMMT is at an appropriate content. PBS/IFR composite with 20 wt% IFR and 1.5 wt% OMMT has an LOI of 40.1% and can pass the UL-94 V0 rating. The synergistic effect between OMMT and IFR on the flame-retardant properties of PBS depends on the content of OMMT, and excessive OMMT diminish this synergistic effect. The possible flame-retardant mechanism of OMMT on PBS/IFR composite is proposed. The results of mechanical test also indicate that OMMT can effectively increase the notched impact strength of PBS/IFR composites.  相似文献   

4.
In order to prepare halogen-free flame-retardant glass-fiber-reinforced poly(ethylene terephthalate) (FR-GF-PET), a novel flame retardant containing three flame-retardant elements, P, N and S, was synthesized by melt condensation reaction. Its chemical structure was characterized by FT-IR and 1H NMR spectra. FR-GF-PET was prepared by melt-mixing the flame retardant with GF-PET. The effects of the flame retardant on the flammability and thermally decomposing behaviors of GF-PET were studied via LOI, UL-94 and TGA tests. The results showed that despite a negative effect on the thermal stability of GF-PET, the incorporation of the flame retardant improved the flame retardancy of GF-PET largely. The LOI values of GF-PET increase linearly with the increase of flame retardant content. The GF-PET passed the V-0 rating in UL-94 tests when 15 wt% of the flame retardant was added to GF-PET. An interesting phenomenon was found, that is, with the increase of flame retardant content, the flame retardancy of the system increased but the char yield decreased, which was explained according to the evidences of XPS tests and the kinetics of thermally decomposing reaction.  相似文献   

5.
The flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus (MRP) in halogen-free flame retardant ethylene vinyl acetate (EVA) composite have been studied by cone calorimeter test (CCT), thermogravimetric analysis (TGA), limiting oxygen index (LOI) and UL-94 test. The results obtained by comparing the flame retardancy of hydrotalcite with magnesium hydroxide (MH) and aluminium hydroxide (AH) for their EVA composites showed that hydrotalcite has higher flame retardant effect than MH and AH at the same loading level. The CCT tests indicated that the heat release rate (HRR) and mass loss rate (MLR) of EVA composite blended with hydrotalcite greatly decreased compared with those blended with MH and AH. The LOI values of EVA/hydrotalcite composites are 3-4% higher than those of the corresponding MH composites at 40-60 wt% loading levels, and 6% higher than that of the corresponding AH composite at 40 wt% loading level. Moreover, the addition of a given amount of MRP apparently resulted in the increase of LOI value and decrease of the HRR and MLR as well the loading of hydrotalcite in EVA blend while keeping the V-0 rating in UL-94 test. However, the smoke release increased during the combustion of EVA/hydrotalcite blend containing MRP.  相似文献   

6.
In this article, a novel intumescent flame retardant (IFR) PNSFR containing three flame-retardant elements, phosphorus, nitrogen, and sulfur was designed and synthesized. Then a series of flame-retardant thermoplastic polyurethanes (TPU) were prepared using the PNSFR. The effects of the flame retardant on the flammability of TPU/PNSFR composites were investigated by limited oxygen index (LOI) and UL-94 vertical burning. The results showed that TPU containing 10 mass% PNSFR had the highest LOI value (36) and could reach the V-0 rating. The flame-retardant mechanism of PNSFR in TPU was also disclosed using thermogravimetric analysis (TG), scanning electron micrograph, TG-infared spectrometry, and Fourier transform infrared spectroscopy. The sulfur and phosphorus elements of PNSFR can be kept in residual char. Moreover, an optimal loading amount of the IFR in TPU is in favor of forming dense and continuous char layer to prevent heat transfer and the spread of flammable gases. The IFR PNSFR may find potential use for various flame-retardant polyurethanes.  相似文献   

7.
The molecular design for inherently flame-retardant poly(lactic acid) (IFR-PLA) was outlined and achieved by chemically incorporating an effective organophophorus-type flame retardant (FR) into the PLA backbone via the chain extension of the dihydroxyl-terminated prepolymer with 1, 6-hexamethylene diisocyanate (HDI). The structure of IFR-PLA was characterized by 1H- and 31P-nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. IFR-PLA was further blended with the commercial PLA to prepare flame retardant PLA blends (PLA-FR blend). The relevant properties of IFR-PLA and PLA-FR blends were evaluated by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), limiting oxygen index (LOI) measurements and UL-94 tests. The thermal analysis revealed that the char yield of IFR-PLA and PLA-FR blend above 400 °C was greatly enhanced compared to that of pure PLA. The LOI value was significantly improved from 19 for pure PLA to 29 when 1 wt% of phosphorus content was introduced and all IFR-PLA samples achieved V-0 rating in the UL-94 tests. PLA-FR blends had an LOI value of 25-26 and UL-94 V-2 rating at 20 wt% of IFR-PLA content. The tensile strength of all the FR PLA systems was ca. 60 MPa. The method used in this study provided a novel route to permanently flame retard PLA.  相似文献   

8.
Aluminum salts of phosphinic acid mixture of diisobutylphosphinic acid and monoisobutylphosphinic acid (HPA-2TBA-Al) and glass fibres were compounded with polyamide 6 to prepare a series of flame retardant GF/PA6 composites via melt blending. The flame retardance and burning behaviors of the composites were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), and Cone calorimeter test. The thermal properties and decomposition kinetics were investigated by thermogravimetric analysis (TGA) under N2 atmosphere. Addition of HPA-2TBA-Al results in an increased LOI value, a UL-94 V-0 rating together with a decrease in both the values of PHRR and THR in Cone calorimetric analysis. Visual observations and scanning electronic microscopy (SEM) after flame retardant tests confirmed the char-formation which acts as a fire barrier in condense phase. Analysis of cone calorimeter data indicates that gas phase flame retardant mechanism exists in the GFPA6/HPA-2TBA-Al system.  相似文献   

9.
Compared with poly(butylene terephthalate) (PBT), glass-fibre-reinforced poly(butylene terephthalate) (GF-PBT) is difficult to flame retard with halogen-free flame retardants. In the present study, the aluminium salt of hypophosphorous acid (AP) was used as a flame retardant for GF-PBT. A series of flame-retardant GF-PBT composites was prepared via melt compounding. The flame retardance and combustion behaviour of the composites were studied by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimetric test. Thermal behaviours and thermal decomposition kinetics were investigated by thermogravimetric analysis (TGA) under N2 atmosphere. The addition of AP to the composites could result in an increased LOI value, a UL-94 V-0 (1.6 mm) classification and a better fire performance in cone calorimetric tests. The char morphology observation after flame-retardant tests, calculation of decomposition kinetics, X-ray photoelectron spectroscopy (XPS) and infra-red spectral analysis of the char residue confirmed the condensed-phase flame-retardant mechanism. Furthermore, the mechanical properties of the flame-retardant composites were not deteriorated, retaining an acceptable level.  相似文献   

10.
An efficient flame retardant polymeric synergist poly[N4-bis(ethylenediamino)-phenyl phosphonic-N2, N6-bis(ethylenediamino)-1,3,5-triazine-N-phenyl phosphonate] (PTPA) was designed and synthesized from cyanuric chloride, ethylenediamine and phenylphosphonic dichloride. It was characterized by Fourier Transform Infrared (FTIR), 1H NMR and 31P NMR, Elemental Analysis (EA) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Combined with ammonium polyphosphate (APP), a new intumescent flame retardant (IFR) was obtained. The flammability behaviors of polypropylene (PP)/IFR system were investigated by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimetry. With 25 wt% of IFR (APP:PTPA = 2:1), the PP/IFR system could achieve a LOI value of 34.0% and UL-94 V-0 rating, and the heat release rate (HRR), peak heat release rate (PHRR), total heat release (THR) and smoke production rate (SPR) were considerably reduced, especially HRR and SPR were decreased by 85% and 79%, respectively. The results indicate that there is an excellent synergism between APP and PTPA, which endows PP with both good flame retardancy and good smoke suppression. Furthermore, the thermal degradation mechanism of IFR and the flame-retardant mechanism of PP/IFR system were investigated by thermogravimetric analysis (TGA), FT-IR, TG-FTIR and scanning electron microscope (SEM). The study on the flame-retardant mechanism of IFR indicated that a structure containing –CN was formed due to the reaction between APP and PTPA.  相似文献   

11.
The effects of lanthanum oxide (La2O3) as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP) were studied, and the new IFR system mainly consisted of the charring-foaming agent (CFA) and ammonium polyphosphate (APP). The limiting oxygen index (LOI), UL-94 test, thermogravimetric analysis (TGA), cone calorimeter (CONE) and scanning electron microscopy (SEM) were used to evaluate the synergistic effects of La2O3. It was found that when IFR was fixed at 20 wt% in IFR-PP composites, only a little amount of La2O3 could enhance LOI value and pass the UL-94 V0 rating test (1.6 mm). The TGA data showed that La2O3 could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that La2O3 and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), ignition time (IT) and so on. The morphological structures observed by SEM demonstrated that La2O3 could promote to form the homogenous and compact intumescent char layer. Thus, a suitable amount of La2O3 plays a synergistic effect in the flame retardancy and smoke suppression of IFR composites.  相似文献   

12.
A series of flame-retardant ethylene–vinyl acetate (EVA) composites with different contents of aluminum phosphate (AHP) and Trimer were prepared. The synergistic flame-retardant effects of the Trimer with AHP in EVA/AHP blends were studied by limiting oxygen index (LOI) tests, UL-94 tests, cone calorimeter tests, thermogravimetric analysis, and scanning electron microscopy (SEM). The LOI and UL-94 results showed that the system containing AHP and Trimer was very effective in improving the flame retardancy of EVA. When the mass ratio of AHP and Trimer was 3:1, the highest flame retardancy could be obtained, and when the flame-retardant loading was 30 wt%, the EVA/AHP/Trimer (7.5%) sample could achieve the V-0 rating in UL-94 tests, at the same time, its LOI value was 24.4%. The TG and DTG results showed that the addition of flame retardants catalyzes EVA decomposition in the first stage and generates a more stable char residue in the second stage. Consequently, an efficient reduction in the flammability parameters, such as heat release rate, total heat release, smoke production rate, and total smoke production could be observed. In addition, it was observed from the SEM observations of the morphological features that the AHP and Trimer combination, at the optimum proportion, could promote the formation of compact charred layers and prevent their cracking, which effectively protected the underlying materials from burning.  相似文献   

13.

Flame retardant-modified sepiolite nanofiber (PSPHD-SEP) was fabricated through chemical grafting by introducing intumescent flame retardant oligomer (PSPHD) onto the surface of sepiolite fiber. Various sepiolite/low-density polyethylene (SEP/LDPE) composites have been prepared successfully via melt blending. The dispersion of various SEPs in LDPE matrix was observed by scanning electron microscope and transmission electron microscope. The thermal degradation behaviors of various SEP/LDPE composites with 3 mass% acid-modified sepiolite fiber (a-SEP) or PSPHD-SEP have been investigated employing thermogravimetric analysis/derivative thermogravimetry. The thermal degradation kinetics of neat LDPE, a-SEP/LDPE and PSPHD-SEP/LDPE systems was comparatively analyzed by means of Friedman and Flynn–Wall–Ozawa methods to further comprehend the effect of a-SEP and PSPHD-SEP on the thermal stability of LDPE. Due to the addition of PSPHD-SEP, the limiting oxygen index value of PSPHD-SEP/LDPE composite can reach 21.3%, and the UL-94V-2 rating is obtained. The cone calorimetry (CONE) tests showed that a reduced peak heat release rate can be achieved for PSPHD-SEP/LDPE composite accompanying with gas-phase fire retardant action.

  相似文献   

14.
In order to achieve acceptable levels of flame retardancy of polymers, phosphorus-based flame retardant (FR) additives at about 20-30% w/w are required which is too high for conventional synthetic fibres. To know whether more finely sized particles of conventional FRs with or without nanoclay are more effective at the same concentration, composites of PA6 with bentonite and ammonium polyphosphate (APP) have been prepared by melt processing in a twin-screw extruder. XRD peaks and TEM images of PA6/Org-bentonite composite show partially ordered intercalation and ordered exfoliation. Thermal analysis in He shows that thermal stability of PA6 nanocomposite has increased by 18 °C compared with pure PA6 during degradation after 425 °C but it has decreased by 100 °C on inclusion of APP in PA6/nanoclay composites. The char yield is increased by 20% in PA6/bentonite/APP composites. No effect on thermal stability or char yield is observed by reducing the particle size of APP.  相似文献   

15.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

16.
Synergistic effect was observed between expandable graphite (EG) and ammonium polyphosphate (APP) on flame retarded polylactide (PLA) in this paper using limiting oxygen index (LOI), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and X-ray spectroscopy (XPS) and cone calorimeter tests etc. In the experiments, PLA composites with 15 wt% of APP/EG(1:3) combinations showed a LOI value of 36.5 and V-0 rating in UL-94 tests, greatly improved flame retardant properties from composites with APP or EG alone. Results from TGA and cone calorimeter demonstrated that APP/EG combination could retard the degradation of polymeric materials above the temperature of 520 °C by promoting the formation of a compact char layer. This char layer protects the matrix effectively from heat penetrating inside and prevents its further degradation, resulting in lower weight loss rate and better flame retarded performance.  相似文献   

17.
A novel efficient halogen-free flame retardant system for polycarbonate   总被引:2,自引:0,他引:2  
A novel silicon- and phosphorus-containing flame retardant, poly (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide siloxane), P(DOPO-VTES) was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO) and vinyltriethoxy silane(VTES). Its chemical structure was confirmed by FTIR. The thermal gravimetrical analysis (TGA) showed that P(DOPO-VTES) had good thermal stability and a high of char yield (86.31%) at 700 °C in nitrogen atmosphere. Its XRD patterns showed that this compound had a certain ordered structure. P(DOPO-VTES) was blended with polycarbonate (PC) together with montmorillonite(MMT) to prepare a series of organic-inorganic hybrids of flame retardant (PC)/P(DOPO-VTES)/MMT via melt blending. The thermal degradation behavior and flame retardancy of those hybrids were investigated with TGA, limiting oxygen index (LOI), vertical burning test (UL-94), and cone calorimeter. The LOI value of the flame-retardant PC systems could reach a maximal value of 32.8 when the content of P(DOPO-VTES) was 5 wt%. When 2 wt% MMT was added into the PC/5%P(DOPO-VTES) system, the UL-94 rating reached V-0. The possible flame retardant mode of MMT was studied via the dynamic rheological properties of the systems and the morphology of the chars remaining after the LOI test and the cone calorimeter test.  相似文献   

18.
The flame retardant effect of newly synthesized phosphorus-containing reactive amine, which can be used both as crosslinking agent in epoxy resins and as a flame retardant, was investigated. The effect of montmorillonite and sepiolite additives on the fire induced degradation was compared to pristine epoxy resin. The effect of combining the organophosphorous amine with clay minerals was also studied. It could be concluded that the synthesized phosphorus-containing amine, TEDAP can substitute the traditional epoxy resin curing agents providing additionally excellent flame retardancy: the epoxy resins flame retarded this way reach 960 °C GWFI value, 33 LOI value and V-0 UL-94 rating - compared to the 550 °C GWFI value, 21 LOI value and “no rate” UL-94 classification of the reference epoxy resin. The peak of heat release was reduced to 1/10 compared to non-flame retarded resin, furthermore a shift in time was observed, which increases the time to escape in case of fire. The flame retardant performance can be further improved by incorporating clay additives: the LOI and the HRR results showed that the optimum of flame retardant effect of clay additives is around 1 mass% filler level in AH-16-TEDAP system. Applying a complex method for mechanical and structural characterization of the intumescent char it was determined that the flame retarded system forms significantly more and stronger char of better uniformity with smaller average bubble size. Incorporation of clay additives (owing to their bubble nucleating activity) results in further decrease in average bubble diameter.  相似文献   

19.
次磷酸铝协同硼酸锌阻燃聚乙烯   总被引:1,自引:0,他引:1  
邝淼  梁贤浩  刘建军  容建华 《应用化学》2016,33(10):1147-1153
以次磷酸铝(AHP)和硼酸锌(ZB)为复合阻燃剂,通过熔融共混法制备了阻燃聚乙烯(PE)材料,研究了AHP和ZB对PE的协同阻燃效应。 结果表明,AHP、ZB阻燃剂在PE基体中分散均匀;添加质量分数为25%AHP阻燃剂,PE材料的极限氧指数值(LOI)提升至25%,通过垂直燃烧测试(UL-94(3.2 mm))V-2级,显示出良好的阻燃效果;引入ZB后,材料LOI值呈先升高后下降趋势,在m(AHP):m(ZB)=21:4时,出现峰值,达到27.2%,并通过UL-94(3.2 mm)V-1级;热失重分析(TGA)结果显示,AHP、ZB阻燃剂能同时提高PE材料的热稳定性和成炭率,当m(AHP):m(ZB)=17:8时,残渣率达到25.7%。  相似文献   

20.
The synergistic effect of phosphorus oxynitride(PON) with a novolac-based char former modified by salification (NA-metal salt) on the flame retardance of polyamide 6(PA6) was investigated.For this purpose,various flame-retardant PA6 systems were melt-compounded with PON,PON/NA,PON/NA-V2O5 and PON/NA-Fe2O3,and their flame retardance was evaluated by measuring the limiting oxygen index(LOI) values and UL-94 vertical burning ratings.The results showed that,compared with the PA6/PON/NA system,the combination of two char formers(NA-V2O5,NA-Fe2O3) with PON could obviously improve the char formation and flame retardance of PA6.The flame retardance and cone calorimetric analyses showed the stronger synergism as well as the better flame retardant performance of PON/NA-Fe2O3 flame retardant system. The effects of different char formers on the flame retardance and thermal stability of this system were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号