首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
2.
3.
4.
To extend the metal cluster size used in interfacing between bulk metals and molecules in ab initio studies of molecular electronics and chemisorption, a reduced size atomic orbital basis set for the gold atom has been generated. Based on the SKBJ relativistic effective core potential set, the three component 5d Gaussian orbital basis set is completely contracted. Comparisons between the full and reduced basis set in Au atom clusters and cluster complexes for geometry, bond distances, dipole moments, atomic charges, spin, bond dissociation energies, lowest energy harmonic frequencies, electron affinities, ionization energies, and density of states distributions show the contracted set to be a viable replacement for the full basis set. This result is obtained using both the B3LYP and BPW91 exchange-correlation potentials in density functional theory.  相似文献   

5.
6.
In the Hirshfeld partitioning of the electron density, the molecular electron density is decomposed in atomic contributions, proportional to the weight of the isolated atom density in the promolecule density, constructed by superimposing the isolated atom electron densities placed on the positions the atoms have in the molecule. A maximal conservation of the information of the isolated atoms in the atoms-in-molecules is thereby secured. Atomic charges, atomic dipole moments, and Fukui functions resulting from the Hirshfeld partitioning of the electron density are computed for a large series of molecules. In a representative set of organic and hypervalent molecules, they are compared with other commonly used population analysis methods. The expected bond polarities are recovered, but the charges are much smaller compared to other methods. Condensed Fukui functions for a large number of molecules, undergoing an electrophilic or a nucleophilic attack, are computed and compared with the HOMO and LUMO densities, integrated over the Hirshfeld atoms in molecules.  相似文献   

7.
8.
9.
Tetraazanaphthalenes are diatropic molecules, whose magnetic response to a magnetic field perpendicular to the molecular plane closely resembles that of naphthalene. The out-of-plane component of the magnetic susceptibility tensor and its strong anisotropy can be used as quantifiers of magnetic aromaticity. Maps showing streamlines and modulus of the current density field provide clear evidence for diatropicity of these systems. They also explain the strong anisotropy of carbon and nitrogen magnetic shielding, which is determined by the big out-of-plane component of the nuclear shielding tensor. The electronic ring currents observed in the map deshield the nuclei of ring hydrogens by enforcing the local magnetic field and diminishing the out-of-plane component of proton shielding.  相似文献   

10.
On the basis of the calculated atomic polar tensors the generalized atomic polar tensor charges have been calculated for 4-isopropylphenol (4-IP) and related compounds: benzene, quinone, phenol and p-nitroaniline (p-NA). The second order Möller–Plesset perturbation method and Huzinaga–Dunning's double valence ζ basis set supplemented by d polarisation function on heavy atoms and p on hydrogen atoms (D95V**) have been used. Analysis of the atomic charges has been done. It is found that the phenyl rings of the 4-IP and p-NA molecules have an intermediate structure between the aromatic ring and the quinoid one.  相似文献   

11.
Proton affinities for hydrides of formula $\mathrm{AH}^{-}_{n-1}$ containing the elements A from the second to the fifth period of the periodic table and groups 14 to 17 are predicted at the Hartree–Fock, MP2 and B3LYP levels of theory employing both core potential basis sets and the 3‐21G basis set. The core potential methods perform well when compared with all electron calculations using the 3‐21++G** basis set. The proton affinities of the hydrides containing elements from groups 15 and 16 of the periodic table are more accurate than those with elements from groups 14 and 17. A cancellation of errors appears to occur more completely if the protonated and nonprotonated molecules contain both bond and lone pairs before and after the protonation reaction. Proton affinities correlate nearly linearly with the atomic charges on the hydrogen atoms when these charges are determined by the generalized atomic polar tensor (GAPT) method. This tendency can be associated, in principle, with the group electronegativities as introduced by Iczkowski and Margrave. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1119–1131, 2000  相似文献   

12.
13.
Interaction energies are a function of the molecular charge distribution. In previous work, we found that the set of atomic partial charges giving the best agreement with experimental vacuum dipole moments were from density functional theory calculations using an extended basis set. Extension of such computations to larger molecules requires an atomic partial charge calculation beyond present computational resources. A solution to this problem is the calculation of atomic partial charges for segments of the molecule and reassociation of such fragments to yield partial charges for the entire molecule. Various partitions and reassociation methods for five molecules relevant to HIV-1 protease inhibitors are examined. A useful method of reassociation is introduced in which atomic partial charges for a large molecule are computed by fitting to the combined electrostatic potential calculated from the fragment partial charges. As expected, the best sites for partitions are shown to be carbon—carbon rather than carbon—nitrogen bonds. © 1997 by John Wiley & Sons, Inc.  相似文献   

14.
We have implemented analytical second-moment gradients for Hartree-Fock and multiconfigurational self-consistent-field wave functions. The code is used to calculate atomic dipole moments based on the generalized atomic polar tensor (GAPT) formalism [Phys. Rev. Lett. 62, 1469 (1989)], and the proposal of Dinur and Hagler (DH) for the calculation of atomic multipoles [J. Chem. Phys. 91, 2949 (1989)]. Both approaches display smooth basis-set convergence toward a well-defined basis-set limit and give reasonable electron correlation effects on the calculated atomic properties. However, the atomic charges and atomic dipole moments obtained from the GAPT partitioning scheme are unable to provide even qualitatively meaningful molecular quadrupole moments for some molecules, and thus the atomic multipole moments calculated in this scheme cannot be considered well suited for analyzing the electron density in molecules and for calculating intermolecular interaction energies. In contrast, the DH approach gives atomic charges and dipole moments that by definition exactly reproduce the molecular quadrupole moments. The approach of DH is, however, restricted to planar molecules and thus suffers from not being applicable to molecules of arbitrary shape. Both the GAPT and DH approaches give rather poor results for octupole and hexadecapole moments, indicating that at least atomic quadrupole moments are required for an accurate representation of the molecular charge distribution in terms of atomic electric moments.  相似文献   

15.
The local response to an external magnetic field normal to the molecular plane of naphthalene and anthracene was investigated via current density and magnetic shielding density maps. The Biot-Savart law shows that the deshielding caused by pi-ring currents in naphthalene is stronger for alpha- than for beta-protons due to geometrical factors. The shielding tensor of the carbon nuclei in both molecules is strongly anisotropic and its out-of-plane component determines the up-field chemical shift of (13)C in nuclear magnetic resonance spectra. The pi-ring currents flowing beyond the C-skeleton in front of a probe carbon nucleus, and on remote parts of the molecular perimeter, yield positive contributions to the out-of-plane component of carbon shielding as big as approximately 10-15% of the total values. Near Hartree-Fock estimates of magnetizability and magnetic shielding at the nuclei fully consistent with the current model are reported.  相似文献   

16.
Important explosives of practical use are composed of nitroaromatic molecules. In this work, we optimized geometries and calculated the electron density of 17 nitroaromatic molecules using the Density Functional Theory (DFT) method. From the DFT one-electron density matrix, we computed the molecular charge densities, thus the electron densities, which were then decomposed into electric multipoles located at the atomic sites of the molecules using the distributed multipole analysis (DMA). The multipoles, which have a direct chemical interpretation, were then used to analyze in details the ground state charge structure of the molecules and to seek for correlations between charge properties and sensitivity of the corresponding energetic material. The DMA multipole moments do not present large variations when the size of the Gaussian basis set is changed; the largest variations occurred in the range 10-15% for the dipole and quadrupole moments of oxygen atoms. The charges on the carbon atoms of the aromatic ring of each molecule become more positive when the number of nitro groups increases and saturate when there are five and six nitro groups. The magnitude and the direction of the dipole moments of the carbon atoms, indicators of site polarization, also depend on the nature of adjacent groups, with the largest dipole value being for C-H bonds. The total magnitude of the quadrupole moment of the aromatic ring carbon atoms indicates a decrease in the delocalized electron density due to an electron-withdrawing effect. Three models for sensitivity of the materials based on the DMA multipoles were proposed. Explosives with large delocalized electron densities in the aromatic ring of the component molecule, expressed by large quadrupole values on the ring carbon atoms, correspond to more insensitive materials. Furthermore, the charges on the nitro groups also influence the impact sensitivity.  相似文献   

17.
18.
19.
We present an alternative approach to determine "density-dependent property"-derived charges for molecules in the condensed phase. In the case of a solution, it is essential to take into consideration the electron polarization of molecules in the active site of this system. The solute and solvent molecules in this site have to be described by a quantum mechanical technique and the others are allowed to be treated by a molecular mechanical method (QM/MM scheme). For calculations based on this scheme, using the forces and interaction energy as density-dependent property our charges from interaction energy and forces (CHIEF) approach can provide the atom-centered charges on the solute atoms. These charges reproduce well the electrostatic potentials around the solvent molecules and present properly the picture of the electron density of the QM subsystem in the solution system. Thus, the CHIEF charges can be considered as the atomic charges under the conditions of the QM/MM simulation, and then enable one to analyze electrostatic interactions between atoms in the QM and MM regions. This approach would give a view of the QM nuclei and electrons different from the conventional methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号