首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Photodynamic therapy (PDT) is a cancer treatment modality utilizing a photosensitizer, light and oxygen. Photodynamic therapy with Photofrin has been approved by the U.S. Food and Drug Administration for treatment of advanced esophageal and early lung cancer. Because of certain drawbacks associated with the use of Photofrin, there is a need to identify new photosensitizers for human use. The photosensitizer Pc 4 (HOSiPc-OSi[CH3]2[CH2]3N[CH3]2) has yielded promising PDT effects in many in vitro and in vivo systems. The aim of this study was to assess the usefulness of Pc 4 as a PDT photosensitizer for a human tumor grown as a xenograft in athymic nude mice. The ovarian epithelial carcinoma (OVCAR-3) was heterotransplanted subcutaneously in athymic nude mice. Sixty mice bearing OVCAR-3 tumors (approximately 80-130 mm3) were divided into six groups of 10 animals each, three for controls and three for treatment. The Pc 4 was given by tail vein injection, and 48 h later a 1 cm area encompassing the tumor was irradiated with light from a diode laser coupled to a fiberoptic terminating in a microlens (lambda = 672 nm, 150 J/cm2, 150 mW/cm2). Tumors of control animals receiving no treatment, light alone or Pc 4 alone continued to grow. Of animals receiving 0.4 mg/kg Pc 4 and light, one (10%) had a complete response and was cured (no regrowth up to 90 days post-PDT), while all others (90%) had a partial response and were delayed in regrowth. Of animals receiving 0.6 mg/kg Pc 4 and light, eight (80%) had a complete response, and two of these were cured. Of animals receiving 1.0 mg/kg Pc 4 and light, six (60%) had a complete response, and two of these were cured. In additional experiments, tumors from animals treated with Pc 4 (1 mg/kg) and light were removed 15, 30, 60 and 180 min post-PDT, and from these tumors DNA and protein were extracted. Agarose gel electrophoresis revealed the presence of apoptotic DNA fragmentation as early as 15 min post-PDT. Western blotting showed the cleavage of the 116 kDa native poly(ADP-ribose) polymerase (PARP) into fragments of approximately 90 kDa, another indication of apoptosis, and the presence of p21/WAF1/CIP1 (p21) in all PDT-treated tumors. These changes did not occur in control tumors. Pc 4 appears to be an effective photosensitizer for PDT of human tumors grown as xenografts in nude mice. Early apoptosis, as revealed by PARP cleavage, DNA fragmentation and p21 overexpression, may be responsible for the excellent Pc 4-PDT response. Clinical trials of Pc 4-PDT are warranted.  相似文献   

3.
Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors but it is also immunosuppressive which may reduce its therapeutic efficacy. The purpose of our study was to elucidate the role of CD4+ and CD8+ T cells in PDT immunosuppression. Using silicon phthalocyanine 4 (Pc4) as photosensitizer, nontumor-bearing CD4 knockout (CD4-/-) mice and their wild type (WT) counterparts were subjected to Pc4-PDT in a manner identical to that used for tumor regression (1 cm spot size, 0.5 mg kg(-1) Pc4, 110 J cm(-2) light) to assess the effect of Pc4-PDT on cell-mediated immunity. There was a decrease in immunosuppression in CD4-/- mice compared with WT mice. We next examined the role of CD8+ T cells in Pc4-PDT-induced immunosuppression using CD8-/- mice following the same treatment regimen used for CD4-/- mice. Similar to CD4-/- mice, CD8-/- mice exhibited less immunosuppression than WT mice. Pc4-PDT-induced immunosuppression could be adoptively transferred with spleen cells from Pc4-PDT treated donor mice to syngenic naive recipients (P < 0.05) and was mediated primarily by T cells, although macrophages were also found to play a role. Procedures that limit PDT-induced immunosuppression but do not affect PDT-induced regression of tumors may prove superior to PDT alone in promoting long-term antitumor responses.  相似文献   

4.
Photodynamic therapy (PDT) is a promising treatment modality that has recently been accepted in clinics as a curative or palliative therapy for cancer and other nonmalignant conditions. Phthalocyanines (Pc) are attractive photosensitizers for PDT because of their enhanced photophysical and photochemical properties. The overall charge and solubility of Pc play a major role in their potential usefulness for PDT. A series of amphiphilic derivatives of tetrasulfonated aluminum Pc (AlPcS4) was prepared by substituting one of the four sulfonate groups with aliphatic side chains of 4, 8, 12 and 16 carbon atoms. The photodynamic properties of the derivatives were compared with those of AlPcS4 and the adjacent disulfonated aluminum Pc. Parameters studied included reversed-phase high-performance liquid chromatography (HPLC) retention times, capacity to generate singlet oxygen (1O2), in vitro cell uptake and phototoxicity, as well as PDT response of transplantable EMT-6 tumors in mice. The monomerized AlPcS4 derivatives showed similar or higher capacities to generate 1O2 as compared with the parent AlPcS4 as measured from relative L-tryptophan photooxidation yields. A549 cell uptake of the AlPcS4 derivatives decreased in the following order: AlPcS4(C16) > AlPcS4(C12) > AlPcS4(C8) > AlPcS4(C4). Human low-density lipoprotein at high concentrations (40 micrograms/mL) completely prevented uptake, whereas at 4 micrograms/mL uptake was decreased for the more lipophilic compounds and yet remained unaffected for the more hydrophilic dyes. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, A549 cell survival was assessed; it showed that photocytotoxic activity varied directly with the HPLC retention times, i.e. more hydrophilic compounds were less phototoxic. As 1O2 yields were similar for the four substituted AlPcS4 derivatives, it was postulated that the increased cytotoxic activity was caused by enhanced subcellular localization as a result of the long aliphatic side chains. These amphiphilic compounds proved to be photodynamically potent against the EMT-6 mouse mammary tumor model implanted in Balb/c mice. At dye doses of 0.2 mumol/kg and a fluence of 400 J/cm2 complete tumor regression was observed with no morbidity. The substitution of AlPcS4 with long aliphatic chains on the macrocycle greatly enhances its photodynamic efficacy both in vitro and in vivo.  相似文献   

5.
Abstract— Photodynamic therapy (PDT) is a promising new modality to treat malignant neoplasms including superficial skin cancers. In our search for an ideal photosensitizer for PDT, Pc 4, a silicon phthalocyanine, has shown promising results both in in vitro assays and in implanted tumors. In this study we assessed the efficacy of Pc 4 PDT in the ablation of murine skin tumors; and the evidence for apoptosis during tumor ablation was also obtained. The Pc 4 was administered through tail vein injection to SENCAR mice bearing chemically induced squamous papillomas, and 24 h later the lesions were illuminated with an argon ion-pumped dye laser tuned at 675 nm for a total light dose of 135 J/cm2. Within 72-96 h, almost complete tumor shrinkage occurred; no tumor regrowth was observed up to 90 days post-PDT. As evident by nucleosome-size DNA fragmentation, appearance of apoptotic bodies in hematoxylin and eosin staining and direct immunoperoxidase detection of digoxigenin-labeled genomic DNA in sections, apoptosis was clearly evident 6 h post-PDT at which time tumor shrinkage was less than 30%. The apoptotic bodies, as evident by the condensation of chromatin material around the periphery of the nucleus and increased vacuolization of the cytoplasm, were also observed in electron microscopic studies of the tumor tissues following Pc 4 PDT. The extent of apoptosis was greater at 15 h than at 6 and 10 h post-PDT. Taken together, our results clearly show that Pc 4 may be an effective photosensitizer for PDT of nonmelanoma skin cancer, and that apoptosis is an early event during this process.  相似文献   

6.
Immunosuppressive Effects of Silicon Phthalocyanine Photodynamic Therapy   总被引:3,自引:0,他引:3  
The purpose of this study was to determine if silicon phthalocyanine 4 (Pc 4), a second-generation photosensitizer being evaluated for the photodynamic therapy (PDT) of solid tumors, was immunosuppressive. Mice treated with Pc 4 PDT 3 days before dinitrofluorobenzene sensitization showed significant suppression of their cell-mediated immune response when compared to mice that were not exposed to PDT. The response was dose dependent, required both Pc 4 and light and occurred at a skin site remote from that exposed to the laser. The immunosuppression could not be reversed by in vivo pre-treatment of mice with antibodies to tumor necrosis factor-alpha or interleukin-10. These results provide evidence that induction of cell-mediated immunity is suppressed after Pc 4 PDT. Strategies that prevent PDT-mediated immunosuppression may therefore enhance the efficacy of this therapeutic modality.  相似文献   

7.
Photodynamic therapy (PDT), the use of light-activated drugs (photosensitizers), is an emerging treatment modality for tumors as well as various nononcologic conditions. Single-photon (1-gamma) PDT is limited by low specificity of the photosensitizer, leading to damage to healthy tissue adjacent to the diseased target tissue. One solution is to use simultaneous two-photon (2-gamma) excitation with ultrafast pulses of near-IR light. Due to the nonlinear interaction mechanism, 2-gamma excitation with a focused beam is localized in three dimensions, allowing treatment volumes on the order of femtoliters. We propose that this will be valuable in PDT of age-related macular degeneration (AMD), which causes blindness due to abnormal choroidal neovasculature and which is currently treated by 1-gamma PDT. Here, Photofrin has been used as the photosensitizer to demonstrate proof-of-principle of 2-gamma killing of vascular endothelial cells in vitro. The 2-gamma absorption properties of Photofrin were investigated in the 750-900 nm excitation wavelength range. It was shown that 2-gamma excitation dominates over 1-gamma excitation above 800 nm. The 2-gamma absorption spectrum of Photofrin in the 800-900 nm excitation wavelength range was measured. The 2-gamma cross section decreased from about 10 GM (1 GM = 10(-50) cm4 s/photon) at 800 nm to 5 GM at 900 nm. Adherent YPEN-1 endothelial cells were then incubated with Photofrin for 24 h and then treated by PDT at 850 nm where the 1-gamma contribution was negligible. Cell death was monitored with the use of 2-gamma scanning laser microscopy. The light doses required for killing were high (6300 J cm(-2) for approximately 50% killing), but 2-gamma cytotoxicity was unequivocally demonstrated. Although Photofrin is, per se, not a good choice for 2-gamma PDT due to its low 2-gamma cross section, this work provides baseline data to guide the development of novel photosensitizers with much higher 2-gamma cross sections (>100 GM), which will be required for 2-gamma PDT of AMD (and other conditions) to be clinically practical.  相似文献   

8.
Abstract— The influence of type of photosensitizer, drug and light dose, and time interval between photosensitizer and illumination on the extent of photodynamic therapy (PDT)-induced bladder damage and recovery was investigated using a mouse model. The three photosensitizers studied were Photofrin, meso-tetrahydroxyphenylchlorin (m-THPC) and bacteriochlorin a (BCA). Functional bladder damage was quantitatively assessed from increases in urination frequency index (FI) at 1-35 weeks after illumination and histological damage was qualitatively assessed at 1 day, 1, 2 and 12 weeks. Photofrin-mediated PDT caused an acute increase in FI at 1 week, with recovery within 2-8 weeks after light doses of 2.7-8.2 J/cm2. After higher light doses there was only partial recovery. Previous results indicated that the acute response and rate of recovery was the same whether Photofrin was given at 1 day or up to 7 days before illumination. The m-THPC-mediated PDT at drug doses of 0.3 mg/kg also resulted in a marked acute response with good recovery, even after 10.8 J/cm2. Lower drug doses in combination with 5.4 J/cm2 did not result in acute or late damage. There was no significant difference in acute response when m-THPC was given 1, 3 or 7 days before illumination, although recovery was faster for the longer illumination intervals (3 or 7 days). Illumination at 1 h after 20 mg/kg BCA induced an acute response within 2 days after illumination, with recovery within 4-8 weeks. Lower drug doses did not result in damage. The most prominent histological changes during the acute period with all three photosensitizers were submucosal edema and vessel dilation, with epithelial denudation (depending on drug/light dose). We conclude that BCA and m-THPC are both potent new photosensitizers. They can induce a moderate to severe acute bladder response with complete healing over a period of a few weeks. The photosensitizer m-THPC is very effective with low doses of photosensitizer and light, whereas relatively high doses of BCA and light are required to obtain equivalent functional bladder damage in our mouse model.  相似文献   

9.
Photodynamic therapy (PDT), the combined action of a photosensitizer and light to produce a cytotoxic effect, is an approved therapy for a number of diseases. At present, clinical PDT treatments involve one-photon excitation of the photosensitizer. A major limitation is that damage may be caused to healthy tissues that have absorbed the drug and lie in the beam path. Two-photon excitation may minimize this collateral damage, as the probability of absorption increases with the square of the light intensity, enabling spatial confinement of the photosensitizer activation. A potential application is the treatment of the wet-form of age-related macular degeneration, the foremost cause of central vision loss in the elderly. Herein, the commercial photosensitizers Visudyne and Photofrin are used to demonstrate quantitative in vitro two-photon PDT. A uniform layer of endothelial cells (YPEN-1) was irradiated with a Ti:sapphire laser (300 fs, 865 nm, 90 MHz) using a confocal scanning microscope. Quantification of the two-photon PDT effect was achieved using the permeability stain Hoechst 33258 and a SYTOX Orange viability stain. Visudyne was found to be around seven times more effective as a two-photon photosensitizer than Photofrin under the conditions used, consistent with its higher two-photon absorption cross-section. We also demonstrate for the first time the quadratic intensity dependence of cellular two-photon PDT. This simple in vitro method for quantifying the efficacy of photosensitizers for two-photon excited PDT will be valuable to test specifically designed two-photon photosensitizers before proceeding to in vivo studies in preclinical animal models.  相似文献   

10.
Abstract Very little is known about the applicability of the metabolic and biochemical events observed in cell culture systems to in vivo tumor shrinkage following photodynamic therapy (PDT). The purpose of this study was to assess whether PDT induces apoptosis during tumor ablation in vivo . We treated radiation-induced fibrosarcoma (RIF-1) tumors grown in C3H/HeN mice with PDT employing three photosensitizers, Photofrin-II, chloroaluminum phthalocyanine tetrasulfonate, or Pc IV (a promising phthalocyanine developed in this laboratory). Each photosensitizer was injected intraperitoneally and 24 h later the tumors were irradiated with an appropriate wavelength of red light using an argon-pumped dye laser. During the course of tumor shrinkage, the tumors were removed at 1, 2, 4 and 10 h post-PDT for DNA fragmentation, histopathologic, and electron microscopic studies. Markers of apoptosis, viz . the ladder of nucleosome-size DNA fragments, increased apoptotic bodies, and condensation of chromatin material around the periphery of the nucleus, were evident in tumor tissue even 1 h post-PDT; the extent of these changes increased during the later stages of tumor ablation. No changes were observed in tumors given photosensitizer alone or irradiation alone. Our data suggest that the damage produced by in vivo PDT may activate endonucleolysis and chromatin condensation, and that apoptosis is an early event in tumor shrinkage following PDT.  相似文献   

11.
In order to apply photodynamic therapy (PDT) to pigmented melanoma, the efficacy of PDT mediated by pheophorbide alpha from silkworm excreta (SPbalpha) and commercial Photofrin against B16F10 melanoma was comparatively studied from the in vivo assay using C57BL/6J mice. From in vitro PDT assay, the proliferation of B16F10 cells treated with SPbalpha (more than 0.5 microg/ml) and light illumination (1.2 J/cm2) were significantly inhibited with the necrotic response. This indicated that the photocytotoxicity of SPbalpha (665 nm) was not influenced by melanin from melanoma. From the assessment of the in vivo photosensitizing activity, the tumor growth was further delayed in groups treated with SPbalpha/PDT compared to that treated with Photofrin /PDT. The survival rate of tumor bearing mice treated with SPbalpha/PDT was closely associated with its photosensitizing effect. In addition, the photosensitizing effect of SPbalpha/PDT showed a dose dependent tendency in light illumination. These results demonstrated that B16F10 melanoma cells were significantly photosensitized by SPbalpha/PDT, regardless of the influence of melanin from melanoma, and SPbalpha/PDT at very low drug dose (1 mg/kg) and light dose (1.2 J/cm2) showed the photosensitizing efficacy surpassing Photofrin against B16F10 melanoma in mice system.  相似文献   

12.
Under the influence of electric pulses cells undergo membrane electroporation (EP), which results in increased permeability of the membrane to exogenous compounds. EP is applied in oncology as a method to enhance delivery of anticancer drugs. For that reason it was essential to combine photodynamic tumor therapy (PDT)--the cancer treatment method based on the use of photosensitizers that localize selectively in malignant tumors and become cytotoxic when exposed to light, and EP, with the aim to enhance the delivery of photosensitizers into the tumor and therefore to increase the efficacy of PDT. Thus, the aim of study was to evaluate the cytotoxic effect of PDT in combination with EP. A Chinese hamster lung fibroblast cell line (DC-3F) was used. The cells were affected by photosensitizers chlorin e(6) (C e(6)) at the dose of 10 mug/ml and aluminium phthalocyanine tetrasulfonate (AlPcS4) at the dose of 50 microg/ml. Immediately after adding of photosensitizers the cells were electroporated with 8 electric pulses at 1200 V/cm intensity, 0.1 ms duration, 1 Hz frequency. Then, after 20 min of incubation the cells were irradiated using a light source--a visible light passing through a filter (KC 14, emitted light from 660 nm). The fluence rate at the level of the cells was 3 mW/m(2). Cytotoxic effect on cells viability was evaluated using MTT assay. Our in vitro data showed that the cytotoxicity of PDT in combination with EP increases fourfold on the average. Based on the results we suggest that EP could enhance the effect of PDT.  相似文献   

13.
Photodynamic therapy (PDT) with lysosome-targeted photosensitizers induces the intrinsic pathway of apoptosis via the cleavage and activation of the BH3-only protein Bid by proteolytic enzymes released from photodisrupted lysosomes. To investigate the role of Bid in apoptosis induction and the role of damaged lysosomes on cell killing by lysosome-targeted PDT, we compared the responses of wild type and Bid-knock-out murine embryonic fibroblasts toward a mitochondrion/endoplasmic reticulum-binding photosensitizer, Pc 4, and a lysosome-targeted sensitizer, Pc 181. Whereas apoptosis and overall cell killing were induced equally well by Pc 4-PDT in both cell lines, Bid−/− cells were relatively resistant to induction of apoptosis and to overall killing following PDT with Pc 181, particularly at low PDT doses. Thus, Bid is critical for the induction of apoptosis caused by PDT with the lysosome-specific sensitizers, but dispensable for PDT targeted to other membranes.  相似文献   

14.
Photodynamic therapy (PDT) treatment of both malignant and benign skin diseases has proven to be effective, and its use is increasing worldwide. However, preclinical studies using murine models have shown that PDT of the skin inhibits cell-mediated immune reactions, as measured by the suppression of the contact hypersensitivity (CHS) reaction. We have previously demonstrated that PDT enhances IL-10 expression in treated skin, and that the kinetics of induction of IL-10 is similar to the kinetics of suppression of systemic CHS reactions by cutaneous PDT. In the following report we have expanded upon these studies to demonstrate that cutaneous PDT, using Photofrin, induces elevated levels of systemic IL-10 that persist for at least 28 days following treatment. The increase in systemic IL-10 correlates to a prolonged suppression of CHS of at least 28 days following cutaneous PDT. IL-10 has been implicated as the causative agent in the suppression of cell-mediated immune reactions by UVB and transdermal PDT. However, in the studies reported here we demonstrate that the suppression of CHS by cutaneous PDT occurs via an IL-10 independent mechanism, as administration of anti-IL-10 antibodies had no effect on the ability of PDT to induce CHS suppression. These results were further confirmed using IL-10 knockout (KO) mice. Cutaneous PDT of IL-10 KO mice resulted in CHS suppression that was not significantly different from suppression induced in wild-type mice. Thus, it appears as though IL-10 does not play a role in CHS suppression by cutaneous PDT. Suppression of cell-mediated immune reactions by UVB and transdermal PDT is reversible by IL-12, which is critical for the development of these reactions. We show that administration of exogenous IL-12 is also able to reverse CHS suppression induced by cutaneous PDT, suggesting that whereas suppression of cell-mediated immune reactions by UVB, transdermal PDT and cutaneous PDT occurs via different mechanisms, a common regulatory point exists.  相似文献   

15.
In photodynamic therapy (PDT), light activates a photosensitizer added to a tissue, resulting in singlet oxygen formation and cell death. The photosensitizer phthalocyanine 4 (Pc 4) localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. The aim of this study was to determine how lysosomes contribute to PDT-induced cell killing by mitochondria-targeted photosensitizers such as Pc 4. We monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes. Bafilomycin was not toxic by itself, but greatly enhanced Pc 4-PDT-induced cell killing. To investigate whether iron loading of lysosomes affects bafilomycin-induced killing, cells were incubated with ammonium ferric citrate (30 μM) for 30 h prior to PDT. Ammonium ferric citrate enhanced Pc 4 plus bafilomycin-induced cell killing without having toxicity by itself. Iron chelators (desferrioxamine and starch-desferrioxamine) and the inhibitor of the mitochondrial calcium (and ferrous iron) uniporter, Ru360, protected against Pc 4 plus bafilomycin toxicity. These results support the conclusion that chelatable iron stored in the lysosomes enhances the efficacy of bafilomycin-mediated PDT and that lysosomal disruption augments PDT with Pc 4.  相似文献   

16.
17.
Photodynamic Therapy of 9L Gliosarcoma with Liposome-Delivered Photofrin   总被引:5,自引:1,他引:5  
Abstract— The effect of Photofrin encapsulated in a liposome delivery vehicle for photodynamic therapy (PDT) of the 9L gliosarcoma and normal rat brain was tested. We hypothesized that the liposome vehicle enhances therapeutic efficacy, possibly by increasing tumor tissue concentration of Photofrin. Male Fisher rats bearing a 9L gliosarcoma were treated 16 days after intracerebral tumor implantation with either Photofrin in dextrose (n = 5) or Photofrin in liposome (n = 6). Nontumor-bearing animals were treated with Photofrin delivered either in dextrose (n = 4) or liposome (n = 4) vehicle. Tissue concentrations of Photofrin delivered either in dextrose (n = 4) or liposome (n = 4) vehicle were measured in tumor, brain adjacent to tumor and in normal brain tissue. Photofrin was administered (intraperitoneally) at a dose of 12.5 mg/kg and PDT (17 J/cm2 of 632 nm light at 100 mW/cm2) was performed 24 h after Photofrin administration. Brains were removed 24 h after PDT and stained with hematoxylin and eosin for analysis of cellular damage. The PDT using Photofrin in the liposome vehicle caused significantly more damage to the tumor ( P < 0.001) than did PDT with Photofrin in dextrose. The PDT of tumor with Photofrin delivered in liposomes caused a 22% volume of cellular necrosis, while PDT of tumor with Photofrin delivered in dextrose caused only scattered cellular damage. Photofrin concentration in tumors was significantly higher ( P = 0.021) using liposome (33.8 ± 18.9 μg/g) compared to dextrose delivery (5.5 ± 1.5 μg/g). Normal brain was affected similarly in both groups, with only scattered cellular necrosis. Our data suggest that the liposome vehicle enhances the therapeutic efficacy of PDT treatment of 9L tumors.  相似文献   

18.
Photodynamic therapy (PDT) is a new treatment modality that uses porphyrin derivatives and visible light, especially for the treatment of cancer. However, PDT with certain photosensitisers can cause prolonged skin photosensitization. This is particularly true for Photofrin II (Photofrin)-mediated PDT where patients are required to avoid direct exposure to sunlight for a period of 4-6 weeks. This is the only long-term adverse reaction to the drug. Recent studies have shown that topical copper treatment avoids this type of inflammatory reaction. In this study, we have tested the efficiency of the liposomal formulation of copper palmitate on porphyrin-photosensitized rats. Initially, adult male Sprague-Dawley rats were rendered photosensitive either by administration of Photofrin or aminolevulinic acid (ALA), a precursor of protoporphyrin IX (PpIX). Prior to this, their dorsal skin was shaved and treated topically with a cream consisting of either empty or copper palmitate-encapsulated liposomal formulation. After being kept in a dimmed light environment, the rats were exposed to visible light, and inflammatory responses were inspected. Histological studies revealed that no inflammatory cells were present at the skin sites treated with liposomal cream containing copper palmitate in the Photofrin-sensitized group while no reduction in the number of inflammatory cells was observed at the skin samples treated with the empty liposomes. In conclusion, the data demonstrate the significant protective effect of topically-applied liposome-encapsulated copper palmitate against both Photofrin and ALA-induced PpIX photosensitivity.  相似文献   

19.
The peripheral benzodiazepine receptor (PBR) is an 18 kDa protein of the outer mitochondrial membrane that interacts with the voltage-dependent anion channel and may participate in formation of the permeability transition pore. The physiological role of PBR is reflected in the high-affinity binding of endogenous ligands that are metabolites of both cholesterol and heme. Certain porphyrin precursors of heme can be photosensitizers for photodynamic therapy (PDT), which depends on visible light activation of porphyrin-related macrocycles. Because the apparent binding affinity of a series of porphyrin analogs for PBR paralleled their ability to photoinactivate cells, PBR has been proposed as the molecular target for porphyrin-derived photocytotoxicity. The phthalocyanine (Pc) photosensitizer Pc 4 accumulates in mitochondria and structurally resembles porphyrins. Therefore, we tested the relevance of PBR binding on Pc 4-PDT. Binding affinity was measured by competition with 3H-PK11195, a high-affinity ligand of PBR, for binding to rat kidney mitochondria (RKM) or intact Chinese hamster ovary (CHO) cells. To assess the binding of the Pc directly, we synthesized 14C-labeled Pc 4 and found that whereas Pc 4 was a competitive inhibitor of 3H-PK11195 binding to the PBR, PK11195 did not inhibit the binding of 14C-Pc 4 to RKM. Further, 14C-Pc 4 binding to RKM showed no evidence of saturation up to 10 microM. Finally, when Pc 4-loaded CHO cells were exposed to activating red light, apoptosis was induced; Pc 4-PDT was less effective in causing apoptosis in a companion cell line overexpressing the antiapoptotic protein Bcl-2. For both cell lines, PK11195 inhibited PDT-induced apoptosis; however, the inhibition was transient and did not extend to overall cell death, as determined by clonogenic assay. The results demonstrate (1) the presence of low-affinity binding sites for Pc 4 on PBR; (2) the presence of multiple binding sites for Pc 4 in RKM and CHO cells other than those that influence PK11195 binding; and (3) the ability of high supersaturating levels of PK11195 to transiently inhibit apoptosis initiated by Pc 4-PDT, with less influence on overall cell killing. We conclude that the binding of Pc 4 to PBR is less relevant to the photocytotoxicity of Pc 4-PDT than are other mitochondrial events, such as photodamage to Bcl-2 and that the observed inhibition of Pc 4-PDT-induced apoptosis by PK11195 likely occurs through a mechanism independent of PBR.  相似文献   

20.
Photodynamic therapy (PDT) is a novel cancer therapy that uses light-activated drugs (photosensitizers) to destroy tumor tissue. Reactive oxygen species produced during PDT are thought to cause the destruction of tumor tissue. However, the precise mechanism of PDT is not completely understood. To provide insight into the in vitro mechanisms of PDT, we studied the subcellular localization of the photosensitizer HOSiPcOSi(CH3)2-(CH2)3N(CH3)2 (Pc 4) in mouse lymphoma (LY-R) cells using double-label confocal fluorescence microscopy. This technique allowed us to observe the relative distributions of Pc 4 and an organelle-specific dye within the same cell via two, spectrally distinct, fluorescence images. To quantify the localization of Pc 4 within different organelles, linear correlation coefficients from the fluorescence data of Pc 4 and the organelle-specific dyes were calculated. Using this measurement, the subcellular spatial distributions of Pc 4 could be successfully monitored over an 18 h period. At early times (0-1 h) after introduction of Pc 4 to LY-R cells, the dye was found in the mitochondria, lysosomes and Golgi apparatus, as well as other cytoplasmic membranes, but not in the plasma membrane or the nucleus. Over the next 2 h, there was some loss of Pc 4 from the lysosomes as shown by the correlation coefficients. After an additional incubation period of 2 h Pc 4 slowly increased its accumulation in the lysosomes. The highest correlation coefficient (0.65) was for Pc 4 and BODIPY-FL C5 ceramide, which targets the Golgi apparatus, and also binds to other cytoplasmic membranes. The correlation coefficient was also high (0.60) for Pc 4 and a mitochondria-targeting dye (Mitotracker Green FM). Both of these correlation coefficients were higher than that for Pc 4 with the lysosome-targeting dye (Lysotracker Green DND-26). The results suggest that Pc 4 binds preferentially and strongly to mitochondria and Golgi complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号