首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Recent experimental studies demonstrate the need to take into account weak interactions in the understanding of solvent extraction processes. This well-established industrial technology now beneficiates of a supramolecular approach, complementary to the traditional analysis based on coordination chemistry. In this article, we focus on the integration of a colloidal approach in the analysis of solvent extraction systems: organic phases used are complex fluids, in which extracting molecules self-assemble into reverse aggregates. We detail the available analytical tools used towards characterization of these organic phases and emphasize the recent results in aggregation-driven extraction. All experimental data are discussed in light of theoretical approaches which propose adequate thermodynamic models and shed light on the importance of entropy on the phenomena. Diluent effects and synergism have been successfully rationalized, efficient new formulations based on a physicochemical analysis have been proposed and the door is now open for further development at industrial scale.  相似文献   

2.
Knowledge of the mesoscopic morphology of condensed phase domains formed after the main phase transition in the two-phase coexistence region of Langmuir monolayers progressed rapidly with the development of the highly-sensitive imaging techniques, particularly by Brewster angle microscopy (BAM). Latest developments of commercial BAM instruments have been developed to a high technical level and allow upgrading to imaging ellipsometers which combine optical microscopy and ellipsometry and make the assessment of small layered structures or patterned thin films possible. A large variety of condensed phase domains different in mesoscopic sizes and shapes as well as their textural features has been observed which depend sensitively on the chemical structure of the amphiphilic monolayer and the system conditions, such as surface pressure and temperature. This unsuspected morphological variety of condensed phase domains has been proven not only in Langmuir monolayers but also in adsorbed monolayers (Gibbs monolayers), in Langmuir monolayers penetrated by dissolved surfactants or in adequate molecular recognition systems. The inner textures of domains can be explained on the basis of their geometry and the two-dimensional lattice in dependence of the tilt angle of the alkyl chains and gave rise to the development of a geometric concept on the basis of the molecular packing. New knowledge has been gained about non-equilibrium structures and their transition kinetics into the equilibrium state. Combined results obtained recently by BAM have enhanced the understanding of molecular organization in phase diagrams and binary mixtures. Recent advances in model studies about chiral discrimination effects and of the highly specific structural changes of host-monolayers by recognition of non-surface active guest-components have made progress. Semi-empirical quantum chemical methods have been used to gain insight into the role of different types of interactions involved in the main characteristics of mesoscopic length scale aggregates of mimetic systems.  相似文献   

3.
《Supramolecular Science》1997,4(1-2):141-146
Self-assembled monolayers (SAMs) on surfaces may be used as molecular templates for the selective deposition of polymer multilayer films. SAMs of ω-functionalized alkane thiolates are patterned onto gold surfaces with micron scale features using the microcontact printing method; glass substrates can also be patterned with trichloroalkylsilane SAMs. Patterned polymeric monolayer and multilayer films are adsorbed atop the SAM from dilute polymer solutions using ionic macromolecular self-assembly techniques which have been developed recently. The effects of polymer molecular weight and ionic content, as well as the use of a second SAM in the unpatterned regions to promote selectivity are discussed. Surface roughness, selectivity and other film properties are presented. It is demonstrated that this technique can be used successfully in the patterning of micron scale features with multilayers of low molecular weight upon adsorption from dilute solution.  相似文献   

4.
Bilayers and monolayers are excellent models of biological membranes. The constituents of the biological membranes such as lipids, cholesterols and proteins are chiral. Chiral molecules are abundant in nature (protein, nucleic acid and lipid). It is obvious that relationship between chirality and morphology (as well as function) of biological membrane is of interest for its fundamental importance and has technological implication regarding various membrane functions. The recent years have witnessed that a number of experimental studies in biomimetic systems have shown fascinating morphologies where chirality of the constituent molecule has decisive influence. Significant progress is made towards the understanding of these systems from the theoretical and computational studies. Helfrich's concept of intrinsic force arising from chirality is a milestone in understanding the biomimetic system such as bilayer and the related concepts, further progresses in molecular understanding made in recent years and experimental studies revealing the influence of chirality on morphology are the focus of the present review. Helfrich's concept of intrinsic force arising due to chirality is useful in understanding two-dimensional bilayers and one-dimensional monolayers and related mimetic systems. Various experimental techniques are used, which can probe the molecular architecture of these mimetic systems at different length scales and both macroscopic (thermodynamic) as well as microscopic (molecular) theories are developed. These studies are aimed to understand the role of chirality in the molecular interaction when the corresponding molecule is present in an aggregate. When one looks into the variety of morphologies exhibited by three-dimensional bilayer and two-dimensional monolayer, the later types of systems are more exotic in the sense that they show more diversity and interesting chiral discrimination. Helfrich's concept of intrinsic force may be considered useful in both cases. The intrinsic force due to chirality is the decisive factor in determining morphology which is explained by molecular approaches. Finally, biological and technological implications of such morphological variations are briefly mentioned.  相似文献   

5.
6.
Engineering silicon oxide surfaces using self-assembled monolayers   总被引:2,自引:0,他引:2  
Although a molecular monolayer is only a few nanometers thick it can completely change the properties of a surface. Molecular monolayers can be readily prepared using the Langmuir-Blodgett methodology or by chemisorption on metal and oxide surfaces. This Review focuses on the use of chemisorbed self-assembled monolayers (SAMs) as a platform for the functionalization of silicon oxide surfaces. The controlled organization of molecules and molecular assemblies on silicon oxide will have a prominent place in "bottom-up" nanofabrication, which could revolutionize fields such as nanoelectronics and biotechnology in the near future. In recent years, self-assembled monolayers on silicon oxide have reached a high level of sophistication and have been combined with various lithographic patterning methods to develop new nanofabrication protocols and biological arrays. Nanoscale control over surface properties is of paramount importance to advance from 2D patterning to 3D fabrication.  相似文献   

7.
The properties of the molecules present in any chemical or biological system are dependent on interactions with the environment, and a quantitative understanding of solvation phenomena remains a major challenge. Molecular recognition probes provide a new approach to quantitatively measure the properties of solvents. Traditionally, solvent polarity scales have been based on spectroscopic probes that provide insight into the nature of solvent-solute interactions. This review compares the solvent polarity parameters obtained from the wavelengths of UV/Visible absorption maxima with solute H-bond parameters obtained from the free energies of solution equilibria. The similarity of the solvent and solute H-bond scales leads to a general H-bond scale that uses the same parameters to describe both solvent and solute. The general H-bond scale provides a framework for understanding the relationship between local intermolecular interactions and the properties of the bulk medium. Intermolecular interactions are sensitive to solvation equilibria, so molecular recognition probes provide fundamentally different information from spectroscopic probes that are sensitive to the populations of different solvation states of the solute. Studies of mixed solvents demonstrate the potential of molecular recognition probes for providing new insights into solvation phenomena.  相似文献   

8.
Long-distance electron transfer (ET) plays an important part in many biological processes. Also, fundamental understanding of ET processes could give grounds for designing miniaturized electronic devices. So far, experimental data on the ET mostly concern ET rates which characterize ET processes as a whole. Here, we develop a different approach which could provide more information about intrinsic characteristics of the long-range intramolecular ET. A starting point of the studies is an obvious resemblance between ET processes and electric transport through molecular wires placed between metallic contacts. Accordingly, the theory of electronic transport through molecular wires is applied to analyze characteristics of a long-range electron transfer through molecular bridges. Assuming a coherent electron tunneling to be a predominant mechanism of ET at low temperatures, it is shown that low-temperature current-voltage characteristics could exhibit a special structure, and the latter contains information concerning intrinsic features of the intramolecular ET. Using the Buttiker dephasing model within the scattering matrix formalism, we analyze the effect of dephasing on the electron transmission function and current-voltage curves.  相似文献   

9.
Cell surface carbohydrates are important targets for many cell surface receptors, and they mediate crucial biological processes ranging from pathogen infectivity to neutrophil adhesion to drug targeting. A central challenge is to identify relationships between lectin architecture and function that influence the adhesion strength, avidity, and kinetics of receptor-glycan bonds. This information is central both to understanding recognition mechanisms and to developing effective therapeutic agents for drug targeting or for preventing infection. Increasingly, force probes are used to assess structure activity relationships of both the glycan ligands and the receptors that bind them, as well as molecular mechanisms underlying binding and adhesion. This review describes recent advances in the use of different force measurement techniques to quantify receptor-glycan bond parameters, and to identify novel features of molecular mechanisms underlying recognition and adhesion. The examples discussed focus in particular on single bond rupture, surface force measurements, and micropipette manipulation. This review emphasizes the often-unique information obtained from studies of lectin interactions with carbohydrate ligands that complement more common structure determinations and solution binding studies.  相似文献   

10.
Interactions with aromatic rings in chemical and biological recognition   总被引:9,自引:0,他引:9  
Intermolecular interactions involving aromatic rings are key processes in both chemical and biological recognition. Their understanding is essential for rational drug design and lead optimization in medicinal chemistry. Different approaches-biological studies, molecular recognition studies with artificial receptors, crystallographic database mining, gas-phase studies, and theoretical calculations-are pursued to generate a profound understanding of the structural and energetic parameters of individual recognition modes involving aromatic rings. This review attempts to combine and summarize the knowledge gained from these investigations. The review focuses mainly on examples with biological relevance since one of its aims it to enhance the knowledge of molecular recognition forces that is essential for drug development.  相似文献   

11.
This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". This study will focus on developments of novel methods to simulate excited state dynamics of molecular aggregates, with the aim of understanding several important chemical physics processes, and providing a solid foundation for predicting the opto-electronic properties of organic functional materials and devices. The contents of this study include: (1) The quantum chemical methods for electronic excited state and electronic couplings targeted for dynamics in molecular aggregates; (2) Methods to construct effective Hamiltonian models, and to solve their dynamics using system-bath approaches; (3) Non-adiabatic mixed quantum-classic methods targeted for molecular aggregates; (4) Theoretical studies of charge and energy transfer, and related spectroscopic phenomena in molecular aggregates.  相似文献   

12.
Detailed mechanistic information is crucial to our understanding of reaction pathways and selectivity. Dynamic exchange NMR techniques, in particular 2D exchange spectroscopy (EXSY) and its modifications, provide indispensable intricate information on the mechanisms of organic and inorganic reactions and other phenomena, for example, the dynamics of interfacial processes. In this Review, key results from exchange NMR studies of small molecules over the last few decades are systemised and discussed. After a brief introduction to the theory, the key types of dynamic processes are identified and fundamental examples given of intra- and intermolecular reactions, which, in turn, could involve, or not, bond-making and bond-breaking events. Following that logic, internal molecular rotation, intramolecular stereomutation and molecular recognition will first be considered because they do not typically involve bond breaking. Then, rearrangements, substitution-type reactions, cyclisations, additions and other processes affecting chemical bonds will be discussed. Finally, interfacial molecular dynamics and unexpected combinations of different types of fluxional processes will also be highlighted. How exchange NMR spectroscopy helps to identify conformational changes, coordination and molecular recognition processes as well as quantify reaction energy barriers and extract detailed mechanistic information by using reaction rate theory in conjunction with computational techniques will be shown.  相似文献   

13.
Click chemistry has been successfully extended into the field of molecular design of novel amphiphatic adducts. After their syntheses and characterizations, we have studied their aggregation properties in aqueous medium. Each of these adducts forms stable suspensions in water. These suspensions have been characterized by dynamic light scattering (DLS) studies and transmission electron microscopy (TEM). The presence of inner aqueous compartments in such aggregates has been demonstrated using dye (methylene blue) entrapment studies. These aggregates have been further characterized using X-ray diffraction (XRD), which indicates the existence of bilayer structures in them. Therefore, the resulting aggregates could be described as vesicles. The temperature-induced order-to-disorder transitions of the vesicular aggregates and the accompanying changes in their packing and hydration have been examined using high-sensitivity differential scanning calorimetry, fluorescence anisotropy, and generalized polarization measurements using appropriate membrane-soluble probe, 1,6-diphenylhexatriene, and Paldan, respectively. The findings of these studies are consistent with each other in terms of the apparent phase transition temperatures. Langmuir monolayer studies confirmed that these click adducts also form stable monolayers on buffered aqueous subphase at the air-water interface.  相似文献   

14.
The main characteristics of Langmuir monolayers are radically changed by molecular recognition of hydrogen bond nonsurface-active species. The change in the thermodynamic, phase, and structural features by molecular recognition of dissolved uracil or barbituric acid by 2,4-di(n-undecylamino)-6-amino-1,3,5-triazine (2C11H23-melamine) monolayers is characterized by combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements. Phase behavior of the 2C11H23-melamine monolayer and morphology of the condensed phase domains are changed drastically, but in a specific way, by molecular recognition of uracil or barbituric acid. The main characteristics of the interfacial system can be essentially affected by the kinetics of the recognition process. Pure 2C11H23-melamine monolayers show only small compact, but nontextured domains. The monolayers of 2C11H23-melamine-uracil assemblies develop well-shaped circular condensed-phase domains having an inner texture with alkyl chains essentially oriented parallel to the periphery and having a striking tendency to two-dimensional (2D) Ostwald ripening. The 2C11H23-melamine-barbituric acid monolayers form large homogeneous areas of condensed phase that transfer at smaller areas per molecule to a homogeneous condensed monolayer. BAM imaging of corresponding assemblies with ((CH3(CH2)11O(CH2)3)2-melamine having modified alkyl chains demonstrates the specific effect of the monolayer component. GIXD results reveal that molecular recognition of pyrimidine derivatives gives rise only to quantitative changes in the two-dimensional lattice structure. The striking differences in the main characteristics between the supramolecular species are related to their different chemical structures. Quantum chemical calculations using the semiempirical PM3 method provide information about the different nature of the hydrogen-bonding-based supramolecular structures.  相似文献   

15.
Development of new generations of membranes with high degrees of permeabilities and controllable mass transport properties requires a fundamental understanding of the relationship between molecular structures and permeabilities. Initiation of interdisciplinary research in biology, biophysics, polymer and colloid chemistry is proposed to provide the insight to membrane transport processes at the molecular level. Mother nature's most talented transporter — the biological membrane — should inspire this endeavor. Following a survey of the properties of, and recognized transport mechanisms in, biomembranes, membrane-mimetic chemistry is introduced to serve as a bridge between biological and polymeric membranes. Surfactant aggregates — micelles, monolayers, organized multilayers (Langmuir—Blodgett films), bilayer lipid membranes (BLMs), vesicles and polymerized vesicles — are shown to be the media in membrane-mimetic chemistry. Properties of these organized surfactant assemblies are summarized. Emphasis is placed on the control of molecular transport in membrane-mimetic systems. Perspectives and prospectives of biomimetic membranology are discussed.  相似文献   

16.
Biomolecular gradients in cell culture systems   总被引:3,自引:0,他引:3  
Biomolecule gradients have been shown to play roles in a wide range of biological processes including development, inflammation, wound healing, and cancer metastasis. Elucidation of these phenomena requires the ability to expose cells to biomolecule gradients that are quantifiable, controllable, and mimic those that are present in vivo. Here we review the major biological phenomena in which biomolecule gradients are employed, traditional in vitro gradient-generating methods developed over the past 50 years, and new microfluidic devices for generating gradients. Microfluidic gradient generators offer greater levels of precision, quantitation, and spatiotemporal gradient control than traditional methods, and may greatly enhance our understanding of many biological phenomena. For each method, we outline the salient features, capabilities, and applications.  相似文献   

17.
The past few decades of molecular recognition studies have greatly enhanced our knowledge on apolar, ion-dipole, and hydrogen-bonding interactions. However, much less attention has been given to the role that multipolar interactions, in particular those with orthogonal dipolar alignment, play in organizing a crystal lattice or stabilizing complexes involving biological receptors. By using results from database mining, this review attempts to give an overview of types and structural features of these previously rather overlooked interactions. A number of illustrative examples of these interactions found in X-ray crystal structures of small molecules and protein-ligand complexes demonstrate their propensity and thus potential importance for both, chemical and biological molecular recognition processes.  相似文献   

18.
The discovery and characterization of molecular interactions is crucial towards a better understanding of complex biological processes. Particularly protein-protein interactions (i.e., PPIs), which are responsible for a variety of cellular functions from intracellular signaling to enzyme-substrate specificity, have been studied broadly over the past decades. Position-specific scoring matrices (PSSM) in particular are used extensively to help determine interaction specificity or candidate interaction motifs at the residue level. However, not all studies successfully report their results as a candidate interaction motif. In many cases, this may be due to a lack of suitable tools for simple analysis and motif generation. Peptide Specificity Analyst (PeSA) was developed with the goal of filling this information gap and providing an easy to use software to aid peptide array analysis and motif generation. PeSA utilizes two models of motif creation: (1) frequency-based using a user-defined peptide list, and (2) weight-based using experimental binding results. The ability to produce motifs effortlessly will make studying, interpreting and disseminating peptide specificity results in an effortless and straightforward process.  相似文献   

19.
20.
Self-assembled monolayers (SAMs) of 1-alkenes on hydrogen-passivated silicon substrates were successfully patterned on the nanometer scale using an atomic force microscope (AFM) probe tip. Nanoshaving experiments on alkyl monolayers formed on H-Si(111) not only demonstrate the flexibility of this technique but also show that patterning with an AFM probe is a viable method for creating well-defined, nanoscale features in a monolayer matrix in a reproducible and controlled manner. Features of varying depths (2-15 nm) were created in the alkyl monolayers by controlling the applied load and the number of etching scans made at high applied loads. The patterning on these SAM films is compared with the patterning of alkyl siloxane monolayers on silicon and mica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号