首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The structures and vibrational spectra of the intermolecular complexes formed by insertion of substituted formaldehyde molecules HRCO (R = H, Li, F, Cl) into cyclic hydrogen fluoride and water clusters are studied at the MP2/aug-cc-pVTZ computational level. Depending on the nature of the substituent R, the cluster type, and its size, the C-H stretching modes of HRCO undergo large blue and partly red shifts, whereas all the F-H and O-H stretching modes of the conventional hydrogen bonds are strongly red-shifted. It is shown that (i) the mechanism of blue shifting can be explained within the concept of the negative intramolecular coupling between C-H and C=O bonds that is inherent to the HRCO monomers, (ii) the blue shifts also occur even if no hydrogen bond is formed, and (iii) variation of the acceptor X or the strength of the C-H...X hydrogen bond may either amplify the blue shift or cause a transition from blue shift to red shift. These findings are illustrated by means of intra- and intermolecular scans of the potential energy surfaces. The performance of the negative intramolecular coupling between C-H and C=O bonds of H(2)CO is interpreted in terms of the NBO analysis of the isolated H(2)CO molecule and H(2)CO interacting with (H2O)n and (HF)n clusters.  相似文献   

2.
Experimental evidence for intramolecular blue-shifting C-H...O hydrogen bonding is presented. Argon matrix-isolation infrared spectra of 1-methoxy-2-(dimethylamino)ethane exhibit a band at 3016.5 cm-1. Spectral behavior with annealing indicates that this band is assigned to the most stable conformer, trans-gauche-(trans|gauche'), with an intramolecular C-H...O hydrogen bond. Density functional calculations show that this band arises from the stretching vibration of the C-H bond participating in the formation of the C-H...O hydrogen bond. The C-H bond is shortened by 0.004 A, and the C-H stretching band is blue-shifted by at least 35 cm-1 on the formation of the hydrogen bond. The (C)H...O distance is calculated as 2.38 A, which is shorter than the corresponding van der Waals separation by 0.3 A.  相似文献   

3.
Twelve tautomers of 2,4-dithiothymine are calculated at the MP2/6-31+G(d) level, and the most stable one is referred to the di-keto form (P12). Then four H-bonded complexes between P12 and water are optimized at the MP2/6-31+G(d) level of theory. The calculation of vibrational frequencies and natural bond orbital analysis are also carried out at the same level to investigate the hydrogen bonds involved in all the systems. Within all the four complexes, three types of hydrogen bonds are formed, in which the O-H...S and N-H...O bonds are the normal bonds with the X-H bond elongation and red shift of the corresponding stretch frequencies, while the C-H...O interaction is an improper, blue-shifting hydrogen bond accompanied with the contraction of the C-H bond and a blue shift of the C-H stretch frequency. The topological properties are investigated with the atoms-in-molecules (AIM) theory. The NMR chemical shielding for the isolated and the four monohydrated 2,4-dithiothymine are calculated using the "gauge-including atomic orbital" (GIAO) method. The 1H chemical shifts are influenced by the formation of hydrogen bonds.  相似文献   

4.
The complexes of glyoxal (Gly), methylglyoxal (MGly), and diacetyl (DAc) with water have been studied using Fourier transform infrared (FTIR) matrix isolation spectroscopy and MP2 calculations with 6-311++G(2d,2p) basis set. The analysis of the experimental spectra of the Gly(MGly,DAc)/H2O/Ar matrixes indicates formation of one Gly...H2O complex, three MGly...H2O complexes, and two DAc...H2O ones. All the complexes are stabilized by the O-H...O(C) hydrogen bond between the water molecule and carbonyl oxygen as evidenced by the strong perturbation of the O-H, C=O stretching vibrations. The blue shift of the CH stretching vibration in the Gly...H2O complex and in two MGly...H2O ones suggests that these complexes are additionally stabilized by the improper C-H...O(H2) hydrogen bonding. The theoretical calculations confirm the experimental findings. They evidence the stability of three hydrogen-bonded Gly...H2O and DAc...H2O complexes and six MGly...H2O ones stabilized by the O-H...O(C) hydrogen bond. The calculated vibrational frequencies and geometrical parameters indicate that one DAc..H2O complexes, two Gly...H2O, and three MGly...H2O ones are additionally stabilized by the improper hydrogen bonding between the C-H group and water oxygen. The comparison of the theoretical frequencies with the experimental ones allowed us to attribute the calculated structures to the complexes present in the matrixes.  相似文献   

5.
Two model systems, 3-methylacroleine and 3-(difluoromethyl)acroleine, are investigated computationally with respect to the character of the C-H...O interaction in their chelate-type (ZZ) conformers. By selecting the appropriate reference conformers, the C-H...O interaction is shown to result in the increase of the C-H stretching frequency (i.e., in the blue shift of the C-H stretching band). This is accompanied by the shortening of the C-H bond distance as compared to its values in reference molecules. Parallel to calculations of the C-H bond distance and stretching frequency, the energy contribution of the C-H...O interaction to the total energy (i.e., the energy associated with the C-H...O contact) is evaluated by using the methods proposed recently for the estimation of the energies of intramolecular hydrogen bonds. It is found that the C-H...O contact in the chelate-type forms of 3-methylacroleine and 3-(difluoromethyl)acroleine corresponds to the negative energy contribution and is repulsive. It is concluded that, despite the stability of the ZZ conformers of the two molecules and their deceptive structural shape, no hydrogen bond in the usual sense is formed between the C-H bond and the lone pair donor. The results are interpreted in terms of the steric compression, which leads to the dominance of the valence repulsion contribution in the C-H...O contact. This mechanism suggests that blue-shifting intramolecular interactions should not be that uncommon, although their recognition requires a careful consideration of the reference system.  相似文献   

6.
The infrared spectra of molecular complexes containing chloroform (CHCl(3)) and Lewis bases (N(2), CO, H(2)O, and CH(3)CN) have been observed in an Ar matrix, and vibrational peaks for the 1:1 complexes have been assigned. The C-H stretching band of chloroform in the complexes showed a seamless transition from a blue shift (for N(2) and CO) to a red shift (H(2)O and CH(3)CN), in accord with the proton affinity of the base molecules. Density functional calculations predicted that the C-H··(σ-type lone pair) isomer is the most stable, which is consistent with the observed vibrational peak shift upon complex formation. The underlying mechanisms of the C-H hydrogen bond were explored using the topological properties of the electronic charge density and natural orbital analyses.  相似文献   

7.
The geometric isotope effect (GIE) of sp- (acetylene-water), sp(2)- (ethylene-water), and sp(3)- (methane-water) hybridized intermolecular C-H...O and C-D...O hydrogen bonds has been analyzed at the HF/6-31++G level by using the multicomponent molecular orbital method, which directly takes account of the quantum effect of proton/deuteron. In the acetylene-water case, the elongation of C-H length due to the formation of the hydrogen bond is found to be greater than that of C-D. In contrast to sp-type, the contraction of C-H length in methane-water is smaller than that of C-D. After the formation of hydrogen bonds, the C-H length itself in all complexes is longer than C-D and the H...O distance is shorter than D...O, similar to the GIE of conventional hydrogen bonds. Furthermore, the exponent (alpha) value is decreased with the formation of the hydrogen bond, which indicates the stabilization of intermolecular C-H...O hydrogen bonds as well as conventional hydrogen bonds. In addition, the geometric difference induced by the H/D isotope effect of the intramolecular C-H...O hydrogen bond shows the same tendency as that of intermolecular C-H...O. Our study clearly demonstrates that C-H...O hydrogen bonds can be categorized as typical hydrogen bonds from the viewpoint of GIE, irrespective of the hybridizing state of carbon and inter- or intramolecular hydrogen bond.  相似文献   

8.
A theoretical study based on the X-H bond strength of the proton donor fragment and its concomitant classical red-shifting or improper blue-shifting of the pure stretching frequency, in weakly hydrogen-bonded X-H···π complexes, is presented. In this sense, the dissociation energy differences, defined as, ΔD(e) = D(e)(X-H)[complex] - D(e)(X-H) [isolated], showed to be linearly connected with the change in stretching frequencies, Δν = ν(X-H)[complex] - ν(X-H)[isolated], of red- and blue-shifting H-bonds. This relationship allows us to define a threshold for the type of the stretching shift of the X-H bond: ΔD(e)(X-H) > 50.3 kcal mol(-1) leads to blue-shifting whereas ΔD(e)(X-H) < 50.3 kcal mol(-1) leads to red-shifting behavior. Complementarily, natural bond orbital analysis along the X-H stretching coordinate and electric dipole polarizability was performed to investigate the factors involved in red- or blue-shifting hydrogen-bonded complexes. It has been found that a high tendency to deplete the electronic population on the H atom upon X-H stretching is exhibited in blue-shifting H-bonded complexes. On the other hand, these types of complexes present a compact electronic redistribution in agreement with polarizability values. This study has been carried out taking as models the following systems: chloroform-benzene (Cl(3)C-H···C(6)H(6)), fluoroform-benzene (F(3)C-H···C(6)H(6)), chloroform-fluorobenzene, as blue-shifting hydrogen-bonded complexes and cyanide acid-benzene (NC-H···C(6)H(6)), bromide and chloride acids-benzene ((Br)Cl-H···C(6)H(6)) and acetylene-benzene (C(2)H(2)···C(6)H(6)) as red-shifting complexes.  相似文献   

9.
Blue-shifting C-H···O hydrogen-bonded complexes between enflurane (CHFCl-CF(2)-O-CHF(2)) and deuterated acetone have been identified in CCl(4) solution by FT-IR spectroscopy. For the two ν(C-H) stretching vibrations of enflurane the observed blue shifts are +17 and +11 cm(-1). The corresponding two infrared ν(C-H) bands show the opposite changes of their intensity, one is decreasing, and the other is significantly increasing, upon formation of the hydrogen bonding. The structures, binding energies, and theoretical infrared spectra of the enflurane-acetone complexes were calculated by MP2 and B3LYP methods using the 6-311++G(d,p) basis set. The interaction energies were evaluated by the complete basis set limit (CBS) calculations at the HF, MP2, and CCSD(T) levels of theory. Although the MP2 method slightly overestimates the blue shifts, the MP2 predicted frequency difference and the relative IR intensities of two ν(C-H) stretching bands for the enflurane-acetone complexes show good agreement with experiment. Unfortunately, the B3LYP method predicts incorrect IR intensities of these hydrogen-bonded systems. The NBO analysis was performed to unravel the origin of the unusual intensity changes of two ν(C-H) stretching bands, in enflurane complexes.  相似文献   

10.
A vibrational analysis of 2-fold hydrogen bonds between an isophthalic amide donor and different acceptors is presented. These systems can be considered as mimetics for the hydrogen-binding situation of numerous supramolecular compounds such as rotaxanes, catenanes, knotanes, and anion receptors. We calculated pronounced red-shifts up to 65 cm(-1) for the stretching modes of the acceptor carbonyl as well as for the donor NH2 groups, whereas we observe a blue shift for the NH2 bending modes and an additional weak hydrogen bond between the acceptor and the middle C-H group of the donor. The red and blue shifts observed for different modes in various complexes have been correlated with the binding energy of the complexes, independently. In comparison with comparable single hydrogen bonds, we find for the 2-fold hydrogen bonds smaller red shifts for the N-H stretch modes of the donor but larger red shifts for the C=O stretch mode of the acceptor. Furthermore, our results indicate that the pronounced blue shift of the C-H stretch mode is basically caused by the fact that the acceptor is fixed directly above this group due to the 2-fold hydrogen bond.  相似文献   

11.
In this study, 16 gas phase complexes of the pairs of XCHZ and CO(2) (X = F, Cl, Br; Z = O, S) have been identified. Interaction energies calculated at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level including both BSSE and ZPE corrections range from -5.6 to -10.5 kJ mol(-1) for XCHOCO(2) and from -5.7 to -9.1 kJ mol(-1) for XCHS···CO(2). Substitution of one H atom by one halogen in formaldehyde and thioformaldehyde reduces the interaction energy of XCHZ···CO(2), while a CH(3) substitution increases the interaction energy of both CH(3)CHO···CO(2) and CH(3)CHS···CO(2). NBO and AIM analyses also point out that the strength of Lewis acid-base interactions decreases going from >C1=S3···C6 to >C1=O3C6 and to >C1-X4···C6. This result suggests the higher capacity of solubility of thiocarbonyl compounds in scCO(2), providing an enormous potential application for designing CO(2)-philic materials based on the >C=S functional group in competition with >C=O. The Lewis acid-base interaction of the types >C=S···C, >C-Cl···C and >C-Br···C is demonstrated for the first time. The contribution of the hydrogen bonding interaction to the total interaction energy is larger for XCHS···CO(2) than for XCHO···CO(2). Upon complexation, a contraction of the C1-H2 bond length and a blue shift of its stretching frequency have been observed, as compared to the isolated monomer, indicating the existence of a blue-shifting hydrogen bond in all complexes examined. Calculated results also lend further support for the viewpoint that when acting as proton donor, a C-H bond having a weaker polarization will induce a stronger distance contraction and frequency blue shift upon complexation, and vice versa.  相似文献   

12.
Close interactions of the charge-enhanced C-H...O type have been analyzed both experimentally and computationally in the protonated thiazole-water system. The formation of a weak hydrogen bond was directly evidenced by a low-frequency shift of the hydrogen-bonded aromatic C-H stretch in the protonated thiazole moiety. For pure thiazole, the pressure dependence of the C-H bands yielded blue frequency shifts. The peak frequency of the aromatic C-H stretch band of protonated thiazole in a dilute D2O solution possesses an unusual nonmonotonic pressure dependence, which indicates enhanced C-H...O hydrogen-bond formation at high pressure. We performed density functional theory calculations to predict the frequency shift of the C-H stretching vibrations. The reorganization of the hydrogen-bonded network may be one of the factors to induce the blue frequency shift to the red frequency shift.  相似文献   

13.
The equilibrium structures, binding energies, and vibrational spectra of the complexes formed between hydrogen fluoride clusters (HF)n (1≤n≤4) and the fluorosilanes SiHF3, SiH2F2, and SiH3F are investigated within the second-order Møller–Plesset perturbation theory method applying extended basis sets. It is shown that Si–FH–F halogen–hydrogen bonds are formed in the most stable open dimers, SiHF3–HF, SiH2F2HF, and SiH3FHF. No Si–HF–H hydrogen bonds occur in these dimers. Nevertheless, blue shifts of Si–H stretching frequencies are calculated. All three trimers, fluorosilane–(HF)2, all three tetramers, fluorosilane–(HF)3, and two of the pentamers, fluorosilane–(HF)4, form cyclic structures with strong Si–FH–F halogen–hydrogen bonds and weak Si–HF–H contacts, the latter displaying, nevertheless, strongly blue-shifted Si–H stretching frequencies. These blue shifts are comparable in size to those of the corresponding fluoromethane–(HF)n complexes and are with about +50 cm−1 for the case n=3 among the largest ever calculated and definitely the largest for Si–H bonds. In the title complexes, the formation of the Si–FH–F halogen–hydrogen bonds induces a substantial stretching of this Si–F bond, which in turn leads to a significant contraction of the fluorosilane Si–H bond in the Si–HF–H hydrogen bond. This disposition of the fluorosilane monomers is demonstrated with the aid of suitable potential energy surface scans and appears to be a prerequisite for the formation of strongly blue-shifted hydrogen bonds.  相似文献   

14.
The optimized geometry of isolated trimethylamine (TMA), its hydrogen bond complexes with phenol derivatives and protonated TMA is calculated at the B3LYP/6-31++G(d,p) level. A natural bond orbital (NBO) analysis on these systems is carried out at the same level of theory. In isolated TMA, one of the C-H bond in each of the three CH(3) groups is more elongated than the two other ones. As revealed by the NBO data, this results from a hyperconjugative interaction from the N lone pair to the sigma*(C-H) orbitals of the C-H bonds being in a transoid position with respect to the N lone pair. The formation of an intermolecular OH...N hydrogen bond with phenols results in a decrease of the lone pair effect. A linear correlation is found between the decrease in occupation of the sigma*(C-H) orbitals and the decrease in the hyperconjugative interaction energy in the complexes and isolated TMA. Complex formation with phenols results in a blue shift of 55-74 cm(-1) of the C-H stretching vibrations involved in the lone pair effect. Smaller blue shifts between 14 and 23 cm(-1) are predicted for the other C-H bonds. In these complexes, a linear correlation is found between the frequency shifts and the elongation of the C-H bonds. Protonation of TMA results in a nearly equalization of all the C-H distances and a blue shift of 180 cm(-1) of the C-H bonds involved in hyperconjugation with the N lone pair.  相似文献   

15.
The presence of a blue shift of A-H stretching frequencies in intermolecular complexes is directly related to the intramolecular coupling between A-H and vicinal A-X bonds in isolated molecules. The intramolecular coupling between vicinal bonds is the decisive parameter that determines whether a general molecule is a candidate for displaying blue-shifted A-H stretching frequencies in intermolecular complexes, with or without hydrogen bonding. The structures and vibrational spectra of dimeric complexes of methanol with H(2)O, HF, HCN, HNC, HOF, HNO, and HSN are investigated at the MP2/6-311++G(2d,2p) approach. Blue- and red-shifts of the methyl C-H stretches of methanol and the various other A-H stretching frequencies in the complexes can be predicted by normal coordinate analyses of methanol and the partner molecules. It is, hence, suggested that conventional normal coordinate analysis is the appropriate predictive tool to decide beforehand whether a given molecule is a promising candidate for the observation of blue shifts in intermolecular complexes.  相似文献   

16.
用密度泛函理论(DFT)方法在PBE0/6-31+G(d, p)水平上对乙胺、乙二胺分别与电解液中的小分子H2O、HF分子间的相互作用进行理论计算, 并在PBE/TZP 水平上利用能量分解分析(EDA)方法对胺与HF、H2O 结合的II-1、II-2、III-1和III-2模型进行计算分析. 结果表明, 胺类物质都能与HF、H2O形成N…H—F(O)、F(O)…H—N或F(O)…H—C的稳定氢键. 但HF与胺类物质形成的氢键比H2O与胺形成的氢键强, 故胺类物质在电解液中优先稳定HF. 乙二胺与HF、H2O结合的稳定性比乙胺强. 乙胺、乙二胺与HF(H2O)形成的最稳定构型均由F(O)—H…N 和F(O)…H—C 氢键结合形成.  相似文献   

17.
The binary complexes of water with styrene and fluorostyrene were investigated using LIF and FDIR spectroscopic techniques. The difference in the shifts of S 1 <-- S 0 electronic transitions clearly points out the disparity in the intermolecular structures of these two binary complexes. The FDIR spectra in the O-H stretching region indicate that water is a hydrogen bond donor in both complexes. The formation of a single O-H...pi hydrogen-bonded complex with styrene and an in-plane complex with fluorostyrene was inferred based on the analysis of the FDIR spectra in combination with ab initio calculations. The in-plane complex with fluorostyrene is characterized by the presence of O-H...F and C-H...O hydrogen bonds, leading to formation of a stable six-membered ring. The synergistic effect of O-H...F and C-H...O hydrogen bonds overwhelms the O-H...pi interaction in fluorostyrene-water complexes.  相似文献   

18.
The hydrogen bonding structures of room-temperature ionic liquids 1,3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate have been studied by infrared spectroscopy. High-pressure infrared spectral profiles and theoretical calculations allow us to make a vibrational assignment of these compounds. The imidazolium C-H bands of 1,3-dimethylimidazolium methyl sulfate display anomalous non-monotonic pressure-induced frequency shifts. This discontinuity in frequency shift is related to enhanced C-H...O hydrogen bonding. This behavior is in contrast with the trend of blue shifts in frequency for the methyl C-H stretching mode at ca. 2960 cm(-1). Our results indicated that the imidazolium C-H groups are more favorable sites for hydrogen bonding than the methyl C-H groups in the pure 1,3-dimethylimidazolium methyl sulfate. Nevertheless, both methyl C-H and imidazolium C-H groups are favorable sites for C-H...O hydrogen bonding in a dilute 1,3-dimethylimidazolium methyl sulfate/D(2)O mixture. Hydrogen bond-like C-H...F interactions were observed between PF(6)(-) and H atoms on the alkyl side chains and imidazolium ring for 1-butyl-3-methylimidazolium hexafluorophosphate.  相似文献   

19.
Twenty two hydrogen-bonded and improper blue-shifting hydrogen-bonded complexes were studied by means of the HF, MP2 and B3LYP methods using the 6-31G(d,p) and 6--311 ++G(d,p) basis sets. In contrast to the standard H bonding, the origin of the improper blue-shifting H bonding is still not fully understood. Contrary to a frequently presented idea, the electric field of the proton acceptor cannot solely explain the different behavior of the H-bonded and improper blue-shifting H-bonded complexes. Compression of the hydrogen bond due to different attractive forces-dispersion or electrostatics--makes an important contribution as well. The symmetry-adapted perturbation theory (SAPT) has been utilized to decompose the total interaction energy into physically meaningful contributions. In the red-shifting complexes, the induction energy is mostly larger than the dispersion energy while, in the case of blue-shifting complexes, the situation is opposite. Dispersion as an attractive force increases the blue shift in the blue-shifting complexes as it compresses the H bond and, therefore, it increases the Pauli repulsion. On the other hand, dispersion in the red-shifting complexes increases their red shift.  相似文献   

20.
Weakly bound dimer complexes FH—CO and FH—OC were investigated using various ab initio and density function theory (DFT) methods. This study compares the strengths of the H—C H‐bond in FH—CO and the H—O H‐bond in FH—OC. The energy difference between dimers, the H‐bond energy, the inter‐monomer distance, the inter‐monomer vibration frequencies, the red shift of the HF stretching frequency, and the elongation of HF bond, all demonstrate that the H—C H‐bond is stronger than the related H—O H‐bond, according to all methods. The calculated Gibbs energies of the formation of the two dimers show that the weakly bound complexes are unstable at room temperature (T = 298 K) and ordinary pressure (P = 1 atm). However, decreasing T or increasing P monotonically decreases ΔG and increases the related equilibrium constant, K, of their dimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号