首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The RAHB systems in malonaldehyde and its derivatives at MP2/ 6‐311++G(d,p) level of theory were studied and their intramolecular hydrogen bond energies by using the related rotamers method was obtained. The topological properties of electron density distribution in O? H···O intramolecular hydrogen bond have been analyzed in term of quantum theory of atoms in molecules (QTAIM). Correlations between the H‐bond strength and topological parameters are probed. The results of QTAIM clearly showed that the linear correlation between the electron density distribution at HB critical point and RAHB ring critical point with the corresponding hydrogen bond energies was obtained. Moreover, it was found a linear correlation between the electronic potential energy density, V(rcp), and hydrogen bond energy which can be used as a simple equation for evaluation of HB energy in complex RAHB systems. Finally, the similar linear treatment between the geometrical parameters, such as O···O or O? H distance, and Lp(O)→σ*OH charge transfer energy with the intramolecular hydrogen bond energy is observed. © 2010 Wiley Periodicals, Inc., Int J Quantum Chem, 2011  相似文献   

17.
18.
We have investigated the density and temperature dependences of microscopic structure and hydrogen bond dynamics of water inside carbon nanotubes (CNTs) using molecular dynamics simulation. The CNTs are treated as rigid, and smoothly truncated extended simple point charge water model is adopted. The results show that as the overall density increases, the atomic density profiles of water inside CNTs become sharper, the peaks shift closer to the wall, and a new peak of hydrogen atomic density appears between the first (outermost) and second layer. The intermittent hydrogen bond correlation function C(HB)(t) of water inside CNTs decays slower than that of bulk water, and the rate of decay decreases as the tube diameter decreases. C(HB)(t) clearly decays more slowly for the first layer of water than for other regions inside CNTs. The C(HB)(t) of the interlayer hydrogen bonds decays faster than those of the other regions and even faster than that of the bulk water. On the other hand, the hydrogen bond lifetimes of the first layer are shorter than those of the inner layer(s). Interlayer hydrogen bond lifetimes are clearly shorter than those of the constituent layers. As a whole, the hydrogen bond lifetimes of water inside CNTs are shorter than those of bulk water, while the relaxation of C(HB)(t) is slower for the confined water than for bulk water. In other words, hydrogen bonds of water inside CNTs break more easily than those of bulk water, but the water molecules remain in each other's vicinity and can easily reform the bonds.  相似文献   

19.
20.
The geometric structures, infrared spectra and hydrogen bond binding energies of the various hydrogen‐bonded Res?‐water complexes in states S0 and S1 have been calculated using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods, respectively. Based on the changes of the hydrogen bond lengths and binding energies as well as the spectral shifts of the vibrational mode of the hydroxyl groups, it is demonstrated that hydrogen bonds HB‐II, HB‐III and HB‐IV are strengthened while hydrogen bond HB‐I is weakened in the four singly hydrogen‐bonded Res?‐Water complexes upon photoexcitation. When the four hydrogen bonds are formed simultaneously between one resorufin anion and four water molecules in the Res?‐4Water complex, all the hydrogen bonds are weakened in both the ground and excited states compared with those in the corresponding singly hydrogen‐bonded Res?‐Water complexes. Furthermore, in complex Res?‐4Water, hydrogen bonds HB‐II and HB‐IV are strengthened while hydrogen bonds HB‐I and HB‐III are weakened after the electronic excitation. The hydrogen bond strengthening and weakening in the various hydrogen‐bonded Res?‐water complexes should be due to the redistribution of the charges among the four heteroatoms (O1‐3 and N1) within the resorufin molecule upon the optical excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号