首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Let G be a finite simple graph on a vertex set V(G) = {x 11,…, x n1}. Also let m 1,…, m n  ≥ 2 be integers and G 1,…, G n be connected simple graphs on the vertex sets V(G i ) = {x i1,…, x im i }. In this article, we provide necessary and sufficient conditions on G 1,…, G n for which the graph obtained by attaching the G i to G is unmixed or vertex decomposable. Then we characterize Cohen–Macaulay and sequentially Cohen–Macaulay graphs obtained by attaching the cycle graphs or connected chordal graphs to arbitrary graphs.  相似文献   

2.
Satoshi Murai 《代数通讯》2013,41(10):3071-3094
In the present article, for bipartite graphs and chordal graphs, their exterior algebraic shifted graph and their symmetric algebraic shifted graph are studied. First, we will determine the symmetric algebraic shifted graph of complete bipartite graphs. It turns out that for a ≥ 3 and b ≥ 3, the exterior algebraic shifted graph of the complete bipartite graph K a,b of size a, b is different from the symmetric algebraic shifted graph of K a,b . Second, we will show that the exterior algebraic shifted graph of any chordal graph G coincides with the symmetric algebraic shifted graph of G. In addition, it will be shown that the exterior algebraic shifted graph of any chordal graph G is equal to some combinatorial shifted graph of G.  相似文献   

3.
The strong chromatic index of a graph G, denoted sq(G), is the minimum number of parts needed to partition the edges of G into induced matchings. For 0 ≤ klm, the subset graph Sm(k, l) is a bipartite graph whose vertices are the k- and l-subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. We show that and that this number satisfies the strong chromatic index conjecture by Brualdi and Quinn for bipartite graphs. Further, we demonstrate that the conjecture is also valid for a more general family of bipartite graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
Let Gn,m be the family of graphs with n vertices and m edges, when n and m are previously given. It is well-known that there is a subset of Gn,m constituted by graphs G such that the vertex connectivity, the edge connectivity, and the minimum degree are all equal. In this paper, S(ab)-classes of connected (ab)-linear graphs with n vertices and m edges are described, where m is given as a function of a,bN/2. Some of them have extremal graphs for which the equalities above are extended to algebraic connectivity. These graphs are Laplacian integral although they are not threshold graphs. However, we do build threshold graphs in S(ab).  相似文献   

5.
For two integers a and b, we say that a bipartite graph G admits an (a, b)-bipartition if G has a bipartition (X, Y) such that |X| = a and |Y| = b. We say that two bipartite graphs G and H are compatible if, for some integers a and b, both G and H admit (a, b)-bipartitions. In this note, we prove that any two compatible trees of order n can be packed into a complete bipartite graph of order at most n + 1. We also provide a family of infinitely many pairs of compatible trees which cannot be packed into a complete bipartite graph of the same order. A theorem about packing two forests into a complete bipartite graph is derived from this result. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
A graph G with q edges is defined to be conservative if the edges of G can be oriented and distinctly numbered with the integers 1, 2,…, q so that at each vertex the sum of the numbers on the inwardly directed edges equals that on the outwardly directed edges. Several classes of graphs, including Kn, for n ≥4, and K2n, 2m, for n, m ≥ 2, are shown to be conservative. It is proven that the dual of a planar graceful graph is conservative, and that the converse of this result is false.  相似文献   

7.
Let C(v1, …,vn) be a system consisting of a circle C with chords v1, …,vn on it having different endpoints. Define a graph G having vertex set V(G) = {v1, …,vn} and for which vertices vi and vj are adjacent in G if the chords vi and vj intersect. Such a graph will be called a circle graph. The chords divide the interior of C into a number of regions. We give a method which associates to each such region an orientation of the edges of G. For a given C(v1, …,vn) the number m of different orientations corresponding to it satisfies q + 1 ≤ mn + q + 1, where q is the number of edges in G. An oriented graph obtained from a diagram C(v1, …,vn) as above is called an oriented circle graph (OCG). We show that transitive orientations of permutation graphs are OCGs, and give a characterization of tournaments which are OCGs. When the region is a peripheral one, the orientation of G is acyclic. In this case we define a special orientation of the complement of G, and use this to develop an improved algorithm for finding a maximum independent set in G.  相似文献   

8.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

9.
A graph is said to be super-connected if every minimum vertex cut isolates a vertex. A graph is said to be hyper-connected if the deletion of each minimum vertex cut creates exactly two components, one of which is an isolated vertex. In this note, we proved that a vertex transitive bipartite graph is not super-connected if and only if it is isomorphic to the lexicographic product of a cycle Cn(n ≥ 6) by a null graph Nm. We also characterized non-hyper-connected vertex transitive bipartite graphs.  相似文献   

10.
The undirected power graph G(S) of a semigroup S is an undirected graph whose vertex set is S and two vertices a,bS are adjacent if and only if ab and a m =b or b m =a for some positive integer m. In this paper we characterize the class of semigroups S for which G(S) is connected or complete. As a consequence we prove that G(G) is connected for any finite group G and G(G) is complete if and only if G is a cyclic group of order 1 or p m . Particular attention is given to the multiplicative semigroup ℤ n and its subgroup U n , where G(U n ) is a major component of G(ℤ n ). It is proved that G(U n ) is complete if and only if n=1,2,4,p or 2p, where p is a Fermat prime. In general, we compute the number of edges of G(G) for a finite group G and apply this result to determine the values of n for which G(U n ) is planar. Finally we show that for any cyclic group of order greater than or equal to 3, G(G) is Hamiltonian and list some values of n for which G(U n ) has no Hamiltonian cycle.  相似文献   

11.
Let B be a commutative ring with identity, m, n, and r be positive integers such that r ≤ min{m, n}, a 1, …, a r (resp. b 1, … b r ) be integers such that 1 ≤ a 1< … < a r m (resp. 1 ≤ b 1 < … < b r < n) and U (resp. V) be the most general m × r (resp. r × n) matrix such that s-minors of first a s ? 1 rows (resp. b s ? 1 columns) of U (resp. V) are all zero for s = 1, …, r. We investigate the B-algebra C generated by all the entries of UV and all the r-minors of U and V. We introduce a Hodge algebra structure, to which the discrete Hodge algebra associate is Cohen Macaulay, on C and prove that C is Cohen-Macaulay if so is B. Using this Hodge algebra structure, we show that C is the ring of absolute invariants of a certain group action, compute the divisor class group and the canonical class of C, and give a criterion of Gorenstein property of C in terms of a 1 ,…, a r and b 1…, b r .  相似文献   

12.
In this note the second moment of the vertex degree sequence of planar graphs is considered. We prove that
  • 1 If G is an outerplanar graph of order n ? 3 then
  • 2 If G is a planar graph of order n ? 4 then
where d1,…,dn is the vertex degree sequence of G. We exhibit all graphs for which these upper bounds are attained.  相似文献   

13.
For k an integer, let G(a, b, k) denote a simple bipartite graph with bipartition (A, B) where |A| = a ≥ 2, |B| = bk ≥ 2, and each vertex of A has degree at least k. We prove two results concerning the existence of cycles in G(a, b, k).  相似文献   

14.
The following result is proved. A graph G can be expressed as the edge-disjoint union of k graphs having chromatic numbers no greater than m1,…,mk, respectively, iff χ(G) ≤ m1mk.  相似文献   

15.
In this paper, it is proven that for each k ≥ 2, m ≥ 2, the graph Θk(m,…,m), which consists of k disjoint paths of length m with same ends is chromatically unique, and that for each m, n, 2 ≤ mn, the complete bipartite graph Km,n is chromatically unique. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

17.
A hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a hamiltonian cycle that encounters v1, v2, …, vk in this order. Theorems by Dirac and Ore, presenting sufficient conditions for a graph to be hamiltonian, are generalized to k-ordered hamiltonian graphs. The existence of k-ordered graphs with small maximum degree is investigated; in particular, a family of 4-regular 4-ordered graphs is described. A graph G of order n ≥ 3 is k-hamiltonian-connected, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices, G contains a v1-vk hamiltonian path that encounters v1, v2,…, vk in this order. It is shown that for k ≥ 3, every (k + 1)-hamiltonian-connected graph is k-ordered and a result of Ore on hamiltonian-connected graphs is generalized to k-hamiltonian-connected graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
Let t(G) be the number of spanning trees of a connected graph G, and let b(G) be the number of bases of the bicircular matroid B(G). In this paper we obtain bounds relating b(G) and t(G), and study in detail the case where G is a complete graph Kn or a complete bipartite graph Kn,m.Received April 25, 2003  相似文献   

19.
Quasi‐random graphs can be informally described as graphs whose edge distribution closely resembles that of a truly random graph of the same edge density. Recently, Shapira and Yuster proved the following result on quasi‐randomness of graphs. Let k ≥ 2 be a fixed integer, α1,…,αk be positive reals satisfying \begin{align*}\sum_{i} \alpha_i = 1\end{align*} and (α1,…,αk)≠(1/k,…,1/k), and G be a graph on n vertices. If for every partition of the vertices of G into sets V 1,…,V k of size α1n,…,αkn, the number of complete graphs on k vertices which have exactly one vertex in each of these sets is similar to what we would expect in a random graph, then the graph is quasi‐random. However, the method of quasi‐random hypergraphs they used did not provide enough information to resolve the case (1/k,…,1/k) for graphs. In their work, Shapira and Yuster asked whether this case also forces the graph to be quasi‐random. Janson also posed the same question in his study of quasi‐randomness under the framework of graph limits. In this paper, we positively answer their question. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

20.
An edge‐labeling f of a graph G is an injection from E(G) to the set of integers. The edge‐bandwidth of G is B′(G) = minf {B′(f)} where B′(f) is the maximum difference between labels of incident edges of G. The theta graph Θ(l1,…,lm) is the graph consisting of m pairwise internally disjoint paths with common endpoints and lengths l1 ≤ ··· ≤ lm. We determine the edge‐bandwidth of all theta graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 89–98, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号