首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntheses of Sulfonated Derivatives of 4-Fluoroaniline Synthesis of 2-amino-5-fluorobenzenesulfonic acid ( 2 ) was achieved by baking the hydrogen sulfate of 4-fluoroaniline ( 1 ). Sulfonation of p-fluoroacetanilide ( 4 ) with oleum followed by hydrolysis gave 5-amino-2-fluorobenzenesulfonic acid ( 3 ). The same reaction with 1 yielded 3 in an impure state. The structures of 2 and 3 were confirmed by converting the diazonium chlorides derived from 5-fluoro-2-nitroaniline ( 5 ) and from 2-fluofo-5-nitroaniline ( 8 ) to 5-fluoro-2-nitrobenzene-sulfonyl chloride ( 6 ) and 2-fluoro-5-nitrobenzenesulfonyl chloride ( 9 ), respectively, followed by hydrolysis of 6 to 5-fluoro-2-nitrobenzenesulfonic acid ( 7 ), and of 9 to 2-fluoro-5-nitrobenzenesulfonic acid ( 10 ), and by final reduction. Compound 10 was also obtained by sulfonation of 1-fluoro-4-nitrobenzene ( 11 ) with oleum.  相似文献   

2.
On the Synthesis of Sulfonated Derivatives of 2,3-Dimethylaniline and 3,4-Dimethylaniline Baking the hydrogensulfate salt of 2,3-dimethylaniline ( 1 ) or of 3,4-dimethylaniline ( 2 ) led to 4-amino-2,3-dimethylbenzenesulfonic acid ( 4 ) and 2-amino-4,5-dimethylbenzenesulfonic acid ( 5 ), respectively (Scheme 1). The sulfonic acid 5 was also obtained by treatment of 2 with sulfuric acid or by reaction of 2 with amidosulfuric acid. 3-Amino-4,5-dimethylbenzenesulfonic acid ( 3 ) and 5-Amino-2,3-dimethylbenzenesulfonic acid ( 6 ) were prepared by sulfonation of 1,2-dimethyl-3-nitrobenzene ( 9 ) to 3,4-dimethyl-5-nitrobenzenesulfonic acid ( 11 ) and of 1,2-dimethyl-4-nitrobenzene ( 10 ) to 2,3-dimethyl-5-nitrobenzenesulfonic acid ( 12 ), respectively, with subsequent Béchamp reduction (Scheme 1). Preparations of 2-amino-3,4-dimethylbenzenesulfonic acid ( 7 ) and of 6-amino-2,3-dimethylbenzenesulfonic acid ( 8 ) were achieved by the sulfur dioxide treatment of the diazonium chlorides derived from 3,4-dimethyl-2-nitroaniline ( 24 ) and from 2,3-dimethyl-6-nitroaniline ( 31 ) to 3,4-dimethyl-2-nitrobenzenesulfonyl chloride ( 29 ) and 2,3-dimethyl-6-nitrobenzenesulfonyl chloride ( 32 ), respectively, followed by hydrolysis to 3,4-dimethyl-2-nitrobenzenesulfonic acid ( 30 ) and 2,3-dimethyl-6-nitrobenzenesulfonic acid ( 33 ), and final reduction (Scheme 3). Compound 7 was also synthesized by reaction of 4-chloro-2,3-dimethylaniline ( 23 ) with amidosulfuric acid to 2-amino-5-chloro-3,4-dimethylbenzenesulfonic acid ( 20 ) and subsequent hydrogenolysis (Scheme 2). 4′-Bromo-2′, 3′-dimethyl-acetanilide ( 13 ) and 4′-chloro-2′, 3′-dimethyl-acetanilide ( 14 ) on treatment with oleum yielded 5-acetylamino-2-bromo-3,4-dimethylbenzenesulfonic acid ( 17 ) and 5-acetylamino-2-chloro-3,4-dimethylbenzenesulfonic acid ( 18 ), respectively. Their structures were proven by hydrolysis to 5-amino-2-bromo-3,4-dimethylbenzenesulfonic acid ( 21 ) and 5-amino-2-chloro-3,4-dimethylbenzenesulfonic acid ( 22 ), followed by reductive dehalogenation to 3 .  相似文献   

3.
Notes on the Synthesis of Sulfonated Derivatives of 5,6,7,8-Tetrahydro-1-naphthylamine and 5,6,7,8-Tetrahydro-2-naphthylamine Sulfonation of 5,6,7,8-tetrahydro-1-naphthylamine ( 1 ) with sulfuric acid gave a mixture of 1-amino-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 2 ), 4-amino-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 13 ) and 4-amino-5,6,7,8-tetrahydronaphthalene-1-sulfonic acid ( 3 ). The same reaction with 5,6,7,8-tetrahydro-2-naphthylamine ( 20 ) yielded 3-amino-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 21 ); formation of 2-amino-5,6,7,8-tetrahydronaphthalene-1-sulfonic acid ( 16 ) or of 3-amino-5,6,7,8-tetrahydronaphthalene-1-sulfonic acid ( 24 ) was not observed. Treatment of 4-bromo-5,6,7,8-tetrahydro-1-naphthylamine ( 4 ) or of its 4-chloro analogue 5 with amidosulfuric acid gave 1-amino-4-bromo-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 9 ) and its 4-chloro analogue 10 , respectively, which were dehalogenated to 2 . Preparations of 13 and 24 were achieved by sulfonation of 5-nitro-1,2,3,4-tetrahydronaphthalene ( 14 ) and 6-nitro-1,2,3,4-tetrahydronaphthalene ( 22 ) to 4-nitro-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 15 ) and 3-nitro-5,6,7,8-tetrahydronaphthalene-1-sulfonic acid ( 23 ), respectively, followed by Béchamp reductions. The sulfonic acid 13 was also obtained by hydrogenolysis of 4-amino-1-bromo-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 11 ) or of its 1-chloro analogue 12 ; compounds 11 and 12 were synthesized from N-(4-bromo-5,6,7,8-tetrahydro-1-naphthyl)acetamide ( 7 ) and from its 4-chloro analogue 8 , respectively, by sulfonation with oleum and subsequent hydrolysis. By ‘baking’ the hydrogensulfate salt of 1 or 20 compounds 3 and 21 were obtained, respectively. Synthesis of 16 was achieved by sulfur dioxide treatment of the diazonium chloride derived from 2-nitro-5,6,7,8-tetrahydro-1-naphthylamine ( 17 ) giving 2-nitro-5,6,7,8-tetrahydronaphthalene-1-sulfonyl chloride ( 18 ), followed by hydrolysis of 18 to the corresponding sulfonic acid 19 and final reduction.  相似文献   

4.
Syntheses of Sulfonated Derivatives of 4-Amino-1, 3-dimethylbenzene and 2-Amino-1, 3-dimethylbenzene Direct sulfonation of 4-amino-1, 3-dimethylbenzene (1) and sulfonation of 4-nitro-1,3-dimethylbenzene ( 4 ) to 4-nitro-1,3-dimethylbenzene-6-sulfonic acid ( 3 ) followed by reduction yield 4-amino-1,3-dimethylbenzene-6-sulfonic acid ( 2 ). The isomeric 5-sulfonic acid ( 5 ) however is prepared solely by baking the acid sulfate salt of 1 . Reaction of sulfur dioxide with the diazonium chloride derived from 2-amino-4-nitro-1,3-dimethylbenzene ( 7 ) leads to 4-nitro-1,3-dimethylbenzene-2-sulfonyl chloride ( 8 ), which is successively hydrolyzed to 4-nitro-1,3-dimethylbenzene-2-sulfonic acid ( 9 ) and reduced to 4-amino-1, 3-dimethylbenzene-2-sulfonic acid ( 6 ). Treatment of 4-amino-6-bromo-1,3-dimethylbenzene ( 12 ) and 4-amino-6-chloro-1, 3-dimethylbenzene ( 13 ), the former obtained by reduction of 4-chloro-6-nitro-1,3-dimethyl-benzene ( 10 ) and the latter from 4-chloro-6-nitro-1, 3-dimethylbenzene ( 11 ), with oleum yield 4-amino-6-bromo-1,3-dimethylbenzene-2-sulfonic acid ( 14 ) and 4-amino-6-chloro-1,3-dimethylbenzene-2-sulfonic acid ( 15 ) respectively; subsequent carbon-halogen hydrogenolyses of 14 and 15 lead also to 6 (Scheme 1). Baking the acid sulfate salt of 2-amino-1, 3-dimethylbenzene ( 17 ) gives 2-amino-1, 3-dimethylbenzene-5-sulfonic acid ( 16 ), whereas the isomeric 4-sulfonic acid ( 18 ) can be prepared by either of the following three possible pathways: Sulfonation of 2-nitro-1,3-dimethylbenzene ( 20 ) to 2-nitro-1,3-dimethylbenzene-4-sulfonic acid ( 21 ) followed by reduction or sulfonation of 2-acetylamino-1,3-dimethylbenzene ( 19 ) to 2-acetylamino-1,3-dimethylbenzene-4-sulfonic acid ( 22 ) with subsequent hydrolysis or direct sulfonation of 17 . Further sulfonation of 18 yields 2-amino 1,3-dimethylbenzene-4,6-disulfonic acid ( 23 ), the structure of which is independently confirmed by reduction of unequivocally prepared 2-nitro- 1,:3-dimethylbenzene-4,6-disulfonic acid ( 24 )(Scheme 2).  相似文献   

5.
On the Synthesis of Sulfonated Derivatives of 4- and 5-Aminoindan Baking the hydrogensulfate salt of 4-aminoindan (1) and 5-aminoindan (2) led, respectively, to 4-aminoindan-7-sulfonic acid (3) and 5-aminoindan-6-sulfonic acid (4). Acid 4 was also obtained by direct sulfonation of 2. 4-Aminoindan-6-sulfonic acid (5) and 6-aminoindan-4-sulfonic acid (6) were prepared by sulfonation of 4-nitroindan (7) and 5-nitroindan (9) , respectively, to 4-nitroindan-6-sulfonic acid (8) and 6-nitroindan-4-sulfonic acid (10) , followed by a Béchamp-reduction. Treatment of 1 with amidosulfuric acid gave 3 , whereas the same reaction with 2 led to a mixture of 4 and 5-aminoindan-4-sulfonic acid (11). Independent synthesis of 11 was achieved by the following sequence of reactions: sulfur dioxide treatment of the diazonium chloride derived from 4-amino-5-nitrodan (13) gave 5-nitroindan-4-sulfonyl chloride (14) ; hydrolysis to 5-nitroindan-4-sulfonic acid (15) , and final reduction. The 4-aminoindan-5-sulfonic acid (16) was synthesized by treatment of 4-amino-7-bromoindan (18) with amidosulfuric acid to give 4-amino-7-bromoindan-5-sulfonic acid (19) followed by hydrogenolysis. Sulfonation of 4-acetyl-amino-7-bromoindan (17) with oleum followed by hydrolysis led to 7-amino-4-bromoindan-5-sulfonic acid (20) , the structure of which was confirmed by reductive dehalogenation to 5 .  相似文献   

6.
Some comments on the syntheses of 5-amino-m-xylene-2-sulfonic acid and 5-amino-m-xylene-4-sulfonic acid Treatment of 5-amino-m-xylene ( 1 ) with oleum led to a 55:45 mixture of 5-amino-m-xylene-2-sulfonic acid ( 2 ) and 5-amino-m-xylene-4-sulfonic acid ( 3 ). The structure of both isomers was proven by reaction of sulfur dioxide with the diazonium chlorides derived from 2-amino-5-nitro-m-xylene ( 5 ) and 4-amino-5-nitro-m-xylene ( 8 ) giving 5-nitro-m-xylene-2-sulfonyl chloride ( 6 ) and 5-nitro-m-xylene-4-sulfonyl chloride ( 9 ) respectively, followed by hydrolyses to the corresponding sulfonic acids 7 and 10 , and final Béchamp reductions. The sulfonic acid 2 was also prepared by sulfonation of 5-acetylamino-m-xylene ( 4 ) to 5-acetylamino-m-xylene-2-sulfonic acid ( 11 ) and subsequent hydrolysis. A further procedure for the synthesis of 3 was sulfonation of 5-amino-2-chloro-m-xylene ( 12 ) – prepared by Béchamp reduction of 2-chloro-5-nitro-m-xylene ( 13 ) – or of 5-amino-2-bromo-m-xylene ( 15 ) – prepared by bromination of 4 and subsequent hydrolysis – to 5-amino-2-chloro-m-xylene-4-sulfonic acid ( 16 ) and 5-amino-2-bromo-m-xylene-4-sulfonic acid ( 17 ) respectively, followed by hydrogenolysis.  相似文献   

7.
4-Amino-5-fluoro-2-pyridone ( 4 ) [5-fluoro-3-deazacytosine] was isolated as the hydrochloride salt from the dealkylation of 4-amino-5-fluoro-2-methoxypyridine ( 2 ), which was obtained from the reduction of 5-fluoro-2-methoxy-4-nitropyridine-N-oxide ( 1 ). Acetylation of 2 gave 4-acetamido-5-fluoro-2-methoxypyridine ( 3 ), which was condensed with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide to give the blocked nucleoside ( 8 ). Removal of the protecting groups gave 5-fluoro-3-deazacytidine. Fusion of the trimethylsilyl derivative of 4 (10), with 2-deoxy-3,5-di-O-p-toluoyl-D-erythro pentofuranosyl chloride gave a mixture of the β and α-anomers 12 and 13 , which were separated and deblocked to yield 5-fluoro-2′-deoxy-3-deazacytidine ( 14 ) and its α-anomer ( 15 ). Several alkylated and acetylated derivatives of 2 were prepared as model compounds for use in the proof of structure.  相似文献   

8.
Acylation of 4-amino-5-nitro-, 5-amino-4-bromo-, 5-amino-4-phenoxy-, 4-hydroxy-5-nitro-, 3- and 4-hydroxyphtalonitriles with p-undecyloxybenzoyl chloride gave the corresponding acyl derivatives which were used to prepare copper and cobalt phthalocyanines. Physicochemical properties of the resulting products were studied. The synthesized metal complexes all exhibit mesomorphic properties.  相似文献   

9.
Synthese of sulfonated derivatives of 2-amino-p-xylene Sulfonation of 2-amino-p-xylene (2) gave 2-amino-p-xylene-5-sulfonic acid (1) . The 2-amino-p-xylene-6-sulfonic acid (3) was prepared via three routes: (1) sulfonation of 2-amino-5-chloro-p-xylene (19) to 5-amino-2-chloro-p-xylene-3-sulfonic acid (20) followed by hydrogenolysis; (2) sulfur dioxide treatment of the diazonium salt derived from 2-amino-6-nitro-p-xylene (21) to 2-nitro-p-xylene-6-sulfonyl chloride (11) followed by hydrolysis to 2-nitro-p-xylene-6-sulfonic acid (4) and Béchamp reduction; (3) Béchamp reduction of 2-chloro-3-nitro-p-xylene-5-sulfonic acid (13) to 3-amino-2-chloro-p-xylene-5-sulfonic acid (16) and subsequent hydrogenolysis. Catalytic reduction of 13 in aqueous sodium carbonate solution gave mixtures of 3 and 16 . 2-Amino-p-xylene-3-sulfonic acid (27) was synthesized via two routes: (1) reaction of 19 with sulfamic acid to 2-amino-5-chloro-p-xylene-3-sulfonic acid (26) followed by hydrogenolysis; (2) sulfur dioxide treatment of the diazonium salt derived from 2-amino-3-nitro-p-xylene (28) to 2-nitro-p-xylene-3-sulfonyl chloride (12) , hydrolysis to 2-nitro-p-xylene-3-sulfonic acid (7) and Béchamp reduction.  相似文献   

10.
In reactions of 3-(2-amino-3-pyridyl)amino-5,5-dimethylcyclohex-2-en-1-one with aromatic aldehydes (2- and 4-hydroxy-, 2-hydroxy-3-methoxy-, 4-dimethylamino-, 4-methoxy-, 2,4- and 3,4-dimethoxy-, 3,4-methylenedioxy-, 4-bromo-, 4-fluoro-, 4-chloro-, 2-nitro- and 3-nitrobenzaldehydes, furfural, and 2-thiophenecarbaldehyde), we have obtained the corresponding 10-aryl-7,7-dimethyl-5,6,7,8,9,10-hexahydro-11H-pyrido[3,2-b][1,4]benzodiazepin-9-ones.  相似文献   

11.
Some comments on the synthesis of 3-aminotoluene-5-sulfonic acid and 2-aminotoluene-3-sulfonic acid. Sulfonation of 3-nitrotoluene ( 5 ) yields predominantly the unsymetrical isomer 5-nitrotoluene-2-sulfonic acid ( 7 ), and lesser amounts of 5-nitrotoluene-3-sulfonic acid ( 6 ), previously reported as the major product. The desired 5-aminotoluene-3-sulfonic acid ( 3 ) was synthesized in preparative amounts from 6-aminotoluene-3-sulfonic acid (4) via the following sequence of reactions: diazotation and Sandmeyer replacement of 6-chlorotoluene-3-sulfonic acid ( 13 ), nitration of the sulfonyl chloride 14 under suitable conditions to give isomer free 6-chloro-5-nitrotoluene-3-sulfonyl chloride ( 15 ), hydrolysis to the sulfonic acid 16 and finally, simultaneous hydrogenolysis and reduction to 3 . The isomeric 7 was unequivocally prepared from 2-amino-5-nitrotoluene ( 9 ) via two routes: (1) diazotation, Sandmeyer thiocyanatation to 5-nitro-2-thiocyanatotoluene ( 10 ), Na2S reduction to the di(2-methyl-4-nitro-phenyl)-disulfide ( 11 ), treatment with nitric acid and chlorine to give 5-nitrotoluene-2-sulfonyl chloride ( 12 ) and finally alkaline hydrolysis to 7 ; (2) Meerwein's SO2 treatment of the diazonium salt derived from 9 leads directly to 12 and thence to 7 . 2-Aminotoluene-3-sulfonic acid ( 1 ) was prepared from the key intermediate 3-amino-2-nitrotoluene ( 18 ) via the same two routes used to prepare 7 from 9 . Both reaction sequences provided 2-nitrotoluene-3-sulfonly chloride, the hydrolysis product of which was reduced to 1 . Intermediate 18 was prepared in the following four steps from m-toluic acid ( 19 ): nitration to the 2-nitroderivative ( 20 ), whose acid chloride ( 21 ) was converted to 2-nitro-m-toluamide ( 22 ), and Hoffmann rearrangement to 18 .  相似文献   

12.
The synthesis of ten new substituted 1,3,4-thiadiazolyl-4(3H)-quinazolinones 8–11, 13, 17 , and 20–23 is reported. Compounds 8–11 were prepared by condensation of 5-fluoro-2-methyl-3,1-benzoxazin-4-one (3) and 5-substituted 2-amino-1,3,4-thiadiazoles 4–7. Compound 13 was obtained by condensation of 5-fluoro-2-methyl-3,1-benzoxazin-4-one (3) with DL-α-amino-?-caprolactam (12) . Compound 17 was synthesized by condensation of 6-bromo-2-methyl-3,1-benzoxazin-4-one (16) and 2-amino-5-t-butyl-1,3,4-thiadiazole (5) . Compounds 20–23 were obtained by condensation of 5-chloro-6,8-dibromo-2-methyl-3,1-benzoxazin-4-one (19) and 5-substituted 2-amino-1,3,4-thiadiazoles 4–7, respectively. The substituted 3,1-benzoxazin-4-ones 3, 16, and 19 were obtained in good yield by refluxing the appropriate anthranilic acid, 1,15 , and 18 with acetic anhydride (2) .  相似文献   

13.
A multistep synthesis of ethyl 5-amino-2-methyIpyridine-4-carboxylate (5a) starting from ethyl acetopyruvate and nitroacetamide is described. The condensation of 5a with benzoylcyanamide gave 2-amino-3-benzoyl-6-methylpyrido[3,4-d]pyrimidin-4(3H) one (10), which could be hydrolyzed in alkali to give 2-amino-4-hydroxy-6-methylpyrido[3,4-d]pyrimidine (9). Free radical bromination of 10 in bromotrichloromethane gave a mixture of the bromo- and chloromethyl- derivatives (11). Fusion of 11 with ethyl p-aminobenzoate, followed by alkaline hydrolysis gave the corresponding pteroic acid analog (12).  相似文献   

14.
Solid phase synthesis of 1, 2-disubstituted-6-nitro-1,4-dihydroquinazolines is described. The new tetrafunctional scaffold N-Alloc-3-amino-3-(2-fluoro-5-nitrophenyl)propionic acid was prepared by nitration of 3-amino-3-(2-fluorophenyl)propionic acid. The scaffold was anchored to Rink resin via its carboxylic group and treated with primary amines to displace the arylfluorine followed by cyclization with aryl isothiocyanates in the presence of DIC upon Alloc deprotection to afford 1,2-disubstituted-6-nitro-1,4-dihydroquinazolines in high yield.  相似文献   

15.
The syntheses of 3-amino-4-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 8a ) and its 2′-deoxy analog 8b as well as 5-amino-2-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-3-one ( 12 ) have been accomplished. Compounds 8a and 8b were synthesized via glycosylation of 3-bromo-5-nitro-1,2,4-triazole which was followed by replacement in three steps of the 3-bromo function to yield 3-nitro-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 4a ) and its 2′-deoxy analog 4b . Compounds 4a and 4b were methylated at N2, hydrogenated and deblocked to give 3-amino-4-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 8a ) and the 2′-deoxy analog 8b . Compound 12 was synthesized by glycosylation of 3-amino-1-methyl-1,2,4-triazolin-5(2H)-one ( 10 ). The structures of 8b and 12 were confirmed by single crystal X-ray diffraction analysis.  相似文献   

16.
Synthesis of the I-oxide ( 2 ) of the photochromic N-(3-pyridyl) sydnone ( 1 ), of N-(5-bromo-3-pyridyl) sydnone ( 3 ), and the I-oxide ( 4 ) of 3 were undertaken in order to study the effect on photochromism exerted by substituents on the pyridine ring. Compounds 2 and 3 were prepared via the corresponding aminopyridines and N-pyridylglycines by the general procedure used earlier to prepare 1 . The required amines, 3-aminopyridine I-oxide and 3-amino-5-bromopyridine, were obtained by Hofmann rearrangement of the corresponding amides. An excellent preparation of 5-bromonicotinamide was developed involving bromination in thionyl chloride followed by reaction of the bromoacid chloride with ammonia in chloroform. Proof of structure for 2 and 3 was accomplished by acid hydrolysis to the corresponding hydrazines, which were isolated, respectively, as acetophenone 3-pyridylhydrazone I-oxide and as 5-bromo-3-pyridylhydrazine hydrochloride. These products were identical with samples prepared by reduction of the respective diazotized amines. Sydnone 4 eluded preparation by this general procedure. 3-Amino-5-bromopyridine I-oxide was prepared conveniently from 5-bromonicotinamide but attempts to prepare the corresponding glycine by catalytic hydrogenation of a mixture of the amine and butyl glyoxylate afforded, in acid solution, N-(3-pyridyl)glycine and, in neutral or alkaline solution, the I-oxide of N-(3-pyridyl)glycine. Both products resulted from the reductive cleavage of the bromine atom. Neither 2 nor 3 was photochromic.  相似文献   

17.
Synthesis of highly substituted 3-fluorofurans is reported. The sequence began with preparation of tert-butyldimethylsilyl alk-1-en-3-yn-1-yl ethers from 1,4-disubstituted alk-3-yn-1-ones. Subsequent fluorination of alkenynyl silyl ethers with Selectfluor gave 2-fluoroalk-3-yn-1-ones in almost quantitative yield. Subsequent 5-endo-dig cyclizations using chlorotriphenylphosphine gold(I)/silver trifluoromethanesulfonate (5/5 mol%), N-bromo- or N-iodosuccinimide and gold(I) chloride/zinc bromide (5/20 mol%), all at room temperature, provided a facile method for the generation of substituted 3-fluoro-, 3-bromo-4-fluoro-, and 3-fluoro-4-iodofurans in good yields. Also, 2,2-difluoroalk-3-yn-1-ones were prepared by fluorination of alk-3-yn-1-ones under organocatalytic conditions. The structures of (Z)-tert-butyldimethylsilyl but-1-en-3-yn-1-yl ether, 3-bromo-4-fluorofuran, and 3-fluoro-4-(phenylethynyl)furan were confirmed by X-ray crystallography.  相似文献   

18.
The reaction of 2-amino-4-methyl-6-(2-pyridyl)-7,8-dihydroindazolo[4,5-d]thiazole, obtained by treating 3-methyl-4-oxo-1-(2-pyridyl)-4,5,6,7-tetrahydroindazole with pyridinium bromide perbromide and then with thiourea, and 2-amino-4-methyl-6-phenyl-7,8-dihydroindazolo[4,5-d]thiazole with 4-bromo-, 4-fluoro-, 4-dimethylamino-, 4-methoxy-, 3,4-dimethoxy-, and 3,4-methylenedioxybenzaldehydes, furfural, pyridinecarbaldehyde, and thiophenecarbaldehyde gave the corresponding Schiff bases. The products of the condensation of these aminothiazoles with cinnamaldehyde, 1-(2-pyridyl)- and 4-chloro-1-(2,4-difluorophenyl)-5-formyl-3-methyl-6,7-dihydroindazoles, 2-formyl-dimedone, and 2-formyl-1,3-indanedione were also obtained.  相似文献   

19.
Reaction of N-methyl-2-amino-4-nitroaniline ( 1 ) with lactic acid afforded 2-(1-hydroxyethyl)-1-methyl-5-nitrobenzimidazole ( 2 ). Oxidation of compound 2 with chromic acid in acetic acid gave 2-acetyl-1-methyl-5-nitrobenzimidazole ( 3 ). Reaction of compound 3 with substituted 2-aminobenzaldehyde ( 4 ) under basic conditions yielded substituted 2-(1-methyl-5-nitro-2-benzimidazolyl)quinolines ( 5 ). Condensation and cyclization of o-aminoacetophenone (or substituted o-aminobenzophenones) with compound 3 under acetic condition afforded compound 7 . Condensation and cyclization of compound 1 with indole-3-carboxaldehyde ( 11 ) in ethanol in the presence of excess nitrobenzene gave 3-(1-methyl-5-nitro-2-benzimidazolyl)indole ( 12 ).  相似文献   

20.
5-Fluoro-2-methoxypyridine ( 3 ) synthesized from 5-amino-2-methoxypyridine was converted to 4-benzyloxy-5-fluoro-2-methoxypyridine ( 12 ) and 2,4-dimethoxy-5-fluoropyridine ( 13 ) by a four step procedure employing the intermediate 5-fluoro-2-methoxy-4-nitropyridine N-oxide (7). Condensation of 3 , 12 , and 13 with 2,3,5-tri-O-benzoyl-D -ribofuranosyl bromide gave, after removal of the protecting groups, 4-deoxy-5-fluoro-3-deazauridine (20), 5-fluoro-3-deazauridine (23) and 5-fluoro-4-methoxy-3-deazauridine (25). Several alkylated and dealkylated derivatives of 3 and 12 were also prepared. Structure proof and anomeric configuration were determined from the uv, nmr, and CD data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号