首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

2.
The new cationic mononuclear complexes [(η6-arene)Ru(Ph-BIAN)Cl]BF46-arene = benzene (1), p-cymene (2)], [(η5-C5H5)Ru(Ph-BIAN)PPh3]BF4 (3) and [(η5-C5Me5)M(Ph-BIAN)Cl]BF4 [M = Rh (4), Ir (5)] incorporating 1,2-bis(phenylimino)acenaphthene (Ph-BIAN) are reported. The complexes have been fully characterized by analytical and spectral (IR, NMR, FAB-MS, electronic and emission) studies. The molecular structure of the representative iridium complex [(η5-C5Me5)Ir(Ph-BIAN)Cl]BF4 has been determined crystallographically. Complexes 15 effectively catalyze the reduction of terephthaldehyde in the presence of HCOOH/CH3COONa in water under aerobic conditions and, among these complexes the rhodium complex [(η5-C5Me5)Rh(Ph-BIAN)Cl]BF4 (4) displays the most effective catalytic activity.  相似文献   

3.
The meso-pyridyl substituted dipyrromethane ligands 5-(4-pyridyl)dipyrromethane (4-dpmane) and 5-(3-pyridyl)dipyrromethane (3-dpmane) have been employed in the synthesis of a series of complexes with the general formulations [(η6-arene)RuCl2(L)] (η6-arene = C6H6, C10H14) and [(η5-C5Me5)MCl2(L)] (M = Rh, Ir). The reaction products have been characterized by microanalyses and spectral studies and molecular structures of the complexes [(η6-C10H14)RuCl2(4-dpmane)] and [(η5-C5Me5)IrCl2(3-dpmane)] have been determined crystallographically. For comparative studies, geometrical optimization have been performed on the complex [(η5-C5Me5)IrCl2(4-dpmane)] using exchange correlation functional B3LYP. Optimized bond length and angles are in good agreement with the structural data of the complex [(η5-C5Me5)IrCl2(3-dpmane)]. The complexes [(η6-C10H14)RuCl2(3-dpmane)], [(η5-C5Me5)RhCl2(3-dpmane)] and [(η5-C5Me5)IrCl2(3-dpmane)] have been employed as a transfer hydrogenation catalyst in the reduction of aldehydes. It was observed that the rhodium and iridium complexes mentioned above are more effective in this regard in comparison to the ruthenium complex.  相似文献   

4.
Heteroleptic rhodium(I) complexes with the general formulations [(η4-C8H12)Rh(L)] [η4-C8H12 = 1,5-cyclooctadiene; L = 5-(4-cyanophenyl)dipyrromethene, cydpm; 5-(4-nitrophenyl)dipyrromethene, ndpm; and 5-(4-benzyloxyphenyl)dipyrromethene, bdpm; 5-(4-pyridyl)dipyrromethene, 4-pyrdpm; 5-(3-pyridyl)dipyrromethene, 3-pyrdpm] have been synthesized. The complex [(η4-C8H12)Rh(4-pyrdpm)] have been used as a synthon in the construction of homo-bimetallic complex [(η4-C8H12)Rh(μ-4-pyrdpm)Rh(η5-C5Me5)Cl2] and hetero-bimetallic complexes [(η4-C8H12)Rh(μ-4-pyrdpm)Ir(η5-C5Me5)Cl2], [(η4-C8H12)Rh(μ-4-pyrdpm)Ru(η6-C10H14)Cl2] and [(η4-C8H12)Rh(μ-4-pyrdpm)Ru(η6-C6H6)Cl2]. Resulting complexes have been characterized by elemental analyses and spectral studies. Molecular structures of the representative mononuclear complexes [(η4-C8H12)Rh(ndpm)] and [(η4-C8H12)Rh(4-pyrdpm)] have been authenticated crystallographically.  相似文献   

5.
The dinuclear dichloro complexes [(η6-arene)2Ru2(μ-Cl)2Cl2] and [(η5-C5Me5)2M2(μ-Cl)2Cl2] react with 2-(pyridine-2-yl)thiazole (pyTz) to afford the cationic complexes [(η6-arene)Ru(pyTz)Cl]+ (arene = C6H61, p-iPrC6H4Me 2 or C6Me63) and [(η5-C5Me5)M(pyTz)Cl]+ (M = Rh 4 or Ir 5), isolated as the chloride salts. The reaction of 2 and 3 with SnCl2 leads to the dinuclear heterometallic trichlorostannyl derivatives [(η6-p-iPrC6H4Me)Ru(pyTz)(SnCl3)]+ (6) and [(η6-C6Me6)Ru(pyTz)(SnCl3)]+ (7), respectively, also isolated as the chloride salts. The molecular structures of 4, 5 and 7 have been established by single-crystal X-ray structure analyses of the corresponding hexafluorophosphate salts. The in vitro anticancer activities of the metal complexes on human ovarian cancer cell lines A2780 and A2780cisR (cisplatin-resistant), as well as their interactions with plasmid DNA and the model protein ubiquitin, have been investigated.  相似文献   

6.
Reactions of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me) and [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with 2-substituted-1,8-naphthyridine ligands, 2-(2-pyridyl)-1,8-naphthyridine (pyNp), 2-(2-thiazolyl)-1,8-naphthyridine (tzNp) and 2-(2-furyl)-1,8-naphthyridine (fuNp), lead to the formation of the mononuclear cationic complexes [(η6-C6H6)Ru(L)Cl]+ {L = pyNp (1); tzNp (2); fuNp (3)}, [(η6-p-iPrC6H4Me)Ru(L)Cl]+ {L = pyNp (4); tzNp (5); fuNp (6)}, [(η5-C5Me5)Rh(L)Cl]+ {L = pyNp (7); tzNp (8); fuNp (9)} and [(η5-C5Me5)Ir(L)Cl]+ {L = pyNp (10); tzNp (11); fuNp (12)}. All these complexes are isolated as chloro or hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV/Vis spectroscopy. The molecular structures of [1]Cl, [2]PF6, [4]PF6, [5]PF6 and [10]PF6 have been established by single crystal X-ray structure analysis.  相似文献   

7.
A quite general approach for the preparation of η5-and η6-cyclichydrocarbon platinum group metal complexes is reported. The dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, C10H14 and C6Me6) and η5-pentamethylcyclopentadienyl rhodium and iridium complexes [(η6-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) react with 2 equiv. of 4-amino-3,5-di-pyridyltriazole (dpt-NH2) in presence of NH4PF6 to afford the corresponding mononuclear complexes of the type [(η6-arene)Ru(dpt-NH2)Cl]PF6 {arene = C10H14 (1), C6H6 (2) and C6Me6 (3)} and [(η6-C5Me5)M(dpt-NH2)Cl]PF6 {M = Rh (4), Ir (5)}. However, the mononuclear η5-cyclopentadienyl analogues such as [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br], [(η5-C5Me5)Ru(PPh3)2Cl] and [(η5-C9H7)Ru(PPh3)2Cl] complexes react in presence of 1 equiv. of dpt-NH2 and 1 equiv. of NH4PF6 in methanol yielded mononuclear complexes [(η5-C5H5)Ru(PPh3)(dpt-NH2)]PF6 (6), [(η5-C5H5)Os(PPh3)(dpt-NH2)]PF6 (7), [(η5-C5Me5)Ru(PPh3)(dpt-NH2)]PF6 (8) and [(η5-C9H7)Ru(PPh3)(dpt-NH2)]PF6 (9), respectively. These compounds have been totally characterized by IR, NMR and mass spectrometry. The molecular structures of 4 and 6 have been established by single crystal X-ray diffraction and some of the representative complexes have also been studied by UV–Vis spectroscopy.  相似文献   

8.
The chiral ligand S-(Ph2P)2N(CHMePh) reacts with Ni(CO)4 in benzene solution to yield the mononuclear complex [Ni(CO)22-(PPh2)2N(CHMePh)}] (1). The reactions of the chiral ligand with the solvated complexes [(η5-C5Me5)MCl(solvent)2]BF4 (M = Rh, Ir) or with the binuclear complex [{(η6-C6Me6)RuCl}2(μ-Cl)] in the presence of a chloride scavenger, give cationic complexes of the type [(ηn-ring)MCl{κ2-(PPh2)2N(CHMePh)}]BF4n-ring = η5-C5Me5; M = Rh (2), Ir (3). η6-C6Me6; M = Ru (4)]. The 31P NMR spectra of compounds 2-4 show two signals corresponding of two phosphorus nuclei with different chemical environments. The related complex [(η5-C5H5)Fe(CO){κ2-(PPh2)2N(CHMePh)}]BF4 (5) was prepared by reaction of the ligand with the complex [(η5-C5H5)Fe(CO)2I] in toluene following by a metathesis with AgBF4. This compound exhibits only one signal in the 31P NMR spectra at room temperature, which splits into two signals at low temperature (213 K). The crystal structures of complexes 2, 3 and 5 have been determined by X-ray diffraction studies. All complexes show the presence of an intramolecular π-stacking interaction. The separation between least-squares planes defined by the two intramolecularly stacked phenyl rings are in the range 3.318-3.649 Å.  相似文献   

9.
Reaction of the benzene-linked bis(pyrazolyl)methane ligands, 1,4-bis{bis(pyrazolyl)-methyl}benzene (L1) and 1,4-bis{bis(3-methylpyrazolyl)methyl}benzene (L2), with pentamethylcyclopentadienyl rhodium and iridium complexes [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh and Ir) in the presence of NH4PF6 results under stoichiometric control in both, mono and dinuclear complexes, [(η5-C5Me5)RhCl(L)]+ {L = L1 (1); L2 (2)}, [(η5-C5Me5)IrCl(L)]+ {L = L1 (3); L2 (4)} and [{(η5-C5Me5)RhCl}2(μ-L)]2+ {L = L1 (5); L2 (6)}, [{(η5-C5Me5)IrCl}2(μ-L)]2+ {L = L1 (7); L2 (8)}. In contrast, reaction of arene ruthenium complexes [(η6­arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6) with the same ligands (L1 or L2) gives only the dinuclear complexes [{(η6-C6H6)RuCl}2(μ-L)]2+ {L = L1 (9); L2 (10)}, [{(η6-p-iPrC6H4Me)RuCl}2(μ-L)]2+ {L = L1 (11); L2 (12)} and [{(η6-C6Me6)RuCl}2(μ-L)]2+ {L = L1 (13); L2 (14)}. All complexes were isolated as their hexafluorophosphate salts. The single-crystal X-ray crystal structure analyses of [7](PF6)2, [9](PF6)2 and [11](PF6)2 reveal a typical piano-stool geometry around the metal centers with six-membered metallo-cycle in which the 1,4-bis{bis(pyrazolyl)-methyl}benzene acts as a bis-bidentate chelating ligand.  相似文献   

10.
The reaction of (η5-C9H2Me5)Rh(1,5-C8H12) (1) with I2 gives the iodide complex [(η5-C9H2Me5)RhI2]2 (2). The solvate complex [(η5- C9H2Me5)Rh(MeNO2)3]2+ (generated in situ by treatment of 2 with Ag+ in nitromethane) reacts with benzene and its derivatives giving the dicationic arene complexes [(η5-9H2Me5)Rh(arene)]2+ [arene = C6H6 (3a), C6Me6 (3b), C6H5OMe (3c)]. Similar reaction with the borole sandwich compound CpRh(η5-C4H4BPh) results in the arene-type complex [CpRh(μ-η56-C4H4BPh)Rh(η5-C9H2Me5)]2+ (4). Treatment of 2 with CpTl in acetonitrile affords cation [(η5-C9H2Me5)RhCp]+ (5). The structure of [3c](BF4)2 was determined by X-ray diffraction. The electrochemical behaviour of complexes prepared was studied. The rhodium-benzene bonding in series of the related complexes [(ring)Rh(C6H6)]2+ (ring = Cp, Cp, C9H7, C9H2Me5) was analyzed using energy and charge decomposition schemes.  相似文献   

11.
Treatment of N-methylimidazole with pentafluorobenzyl bromide produces 1-pentafluorobenzyl-3-methylimidazolium bromide (1), which reacts with silver(I) oxide to give the N-heterocycle carbene (NHC) complex 1-pentafluorobenzyl-3-methylimidazolin-2-ylidene silver(I) bromide (2). Complex 2 acts as a carbene transfer reagent giving the complexes [(η5-C5Me5)MCl2(NHC)] (3a, M = Rh; 3b M = Ir) on reaction with [(η5-C5Me5)MCl(μ-Cl)]2. An attempt to use intramolecular dehydrofluorinative coupling methodology to link the carbene and the pentamethylcyclopentadienyl ligands of [(η5-C5Me5)RhCl(CNtBu)(NHC)]BF4 was unsuccessful.  相似文献   

12.
Reaction of the dimeric rhodium complex [{(η5-C5Me5)Rh(μ-Cl)Cl}2] with an excess of 1-(4-cyanophenyl)-imidazole in dichloromethane afforded neutral mononuclear complex [(η5-C5Me5)RhCl2(CPI)] (CPI = 1-(4-cyanophenyl)-imidazole) 1. The complex 1 reacted with EPh3 (E = P, As, Sb) and N-N donor bases 2,2′-bipyridine and 1,10-phenanthroline in different solvents to give substitution products wherein, nature of the product was governed by polarity of the solvents employed in the reaction. Resulting complexes have been characterized by elemental analyses, spectral (FAB-MS, IR, 1H,13C, 31P NMR, UV-Vis, Emission) and electrochemical studies. Coordination of CPI through imidazole nitrogen and the presence of pendant nitrile group have been supported by spectral studies.  相似文献   

13.
Metal Complexes of Biologically Important Ligands. XCV. η5-Pentamethylcyclopentadienyl Rhodium, Iridium, η6- Benzene Ruthenium, and Phosphine Palladium Complexes of Proline Methylester and Proline Amide Proline methylester (L1) and proline amide (L2) give with the chloro bridged complexes [(η5 -C5Me5)MCl2]2 (M ? Rh, Ir), [(η6 -benzene)RuCl2]2 and [Et3PPdCl2]2 N and N,O coordinated compounds: (η5 -C5Me5)M(Cl2)L1 ( 1, 2 M ? Rh, Ir), [(η5-C5Me5) Rh(Cl)(L2)]+Cl? ( 5 ), [(η6- C6Me6) Ru(Cl)(L2)]+Cl? ( 6 ), [(η6-p-cymene)Ru(Cl)(L2)]+Cl? ( 7 ), [(eta;5-C5Me5)M(Cl)(L2-H+)] ( 9, 10 M ? Rh, Ir), (Et3P)Pd(Cl)2L1 ( 3 ), and [(Et3P)Pd(Cl)(L2)]+Cl? ( 8 ). The NMR spectra indicate that for 5 and 6 only one diastereoisomer is formed. The complexes 1, 2, 3 and 5 were characterized by X-ray diffraction.  相似文献   

14.
The synthesis and characterization of heteroleptic complexes with the formulations [(η6-arene)RuCl(fcdpm)] (η6-arene = C6H6, C10H14) and [(η5-C5Me5)MCl(fcdpm)] (M = Rh, Ir; fcdpm = 5-ferrocenyldipyrromethene) have been reported. All the complexes have been characterized by elemental analyses, IR, 1H NMR and electronic spectral studies. Structures of [(η6-C6H6)RuCl(fcdpm)] and [(η6-C10H14)RuCl(fcdpm)] have been determined crystallographically. Chelating monoanionic linkage of fcdpm to the respective metal centres has been supported by spectral and structural studies. Further, reactivity of the representative complex [(η6-C10H14)RuCl(fcdpm)] with ammonium thiocyanate (NH4SCN) and triphenylphosphine (PPh3) have been examined.  相似文献   

15.
Metal Complexes of Biologically Important Ligands. CIII. [1] Palladium(II), Platinum(II), Ruthenium(II), Rhodium(III), and Iridium(III) Complexes of Desoxyfructosazine The reactions of the pyrazine derivative desoxyfructosazin(pz) with K2PtCl4 and with the chlorobridged [M(PR3)Cl2]2 (M = Pd, Pt), [(η5-C5Me5)MCl2]2 and [(η6-p-Cymol)RuCl2]2 give the watersoluble complexes cis-Cl2Pt(pz)2, (R3P)(Cl)M(pz)M(Cl)(PR3) (M = Pd, Pt), (η5-C5Me5)(Cl)2M(pz)M(Cl)25-C5Me5) (M = Rh, Ir), (η6-p-Cymol)(Cl2)Ru(pz)Ru(Cl)26-p-Cymol).  相似文献   

16.
Reactions of the chloro-bridged arene ruthenium complexes [{(η6-arene)RuCl(μ-Cl}2] (η6-arene = benzene, p-cymene) and structurally analogous rhodium complex [{(η5-C5Me5)RhCl(μ-Cl}2] with imidazole based ligands viz., 1-(4-nitro-phenyl)-imidazole (NOPI), 1-(4-formylphenyl)-imidazole (FPI) and 1-(4-hydroxyphenyl)-imidazole (HPI) have been investigated. The resulting complexes have been characterised by elemental analyses, IR, 1H and 13C NMR, electronic absorption and emission spectral studies. Crystal structure of the representative complex [(η5-C5Me5)RhCl2(NOPI)] has been determined crystallographically. Geometrical optimisation on the complexes have been performed using exchange correlation functional B3LYP. Optimised bond lengths and angles of the complexes have been found to be in good agreement with our earlier reports and single crystal X-ray data of the complex [(η5-C5Me5)RhCl2(NOPI)].  相似文献   

17.
Reactions of the dimers [{(η5-C5Me5)MCl(μ-Cl)}2] (M=Rh, Ir) with the ligand NMe(PPh2)2 in 1:2 molar ratio afford the mononuclear cationic complexes [(η5-C5Me5)MCl{η2-P,P′-(Ph2P)2NMe}]Cl (M=Rh 1, Ir 2). Similar iodide complexes, [(η5-C5Me5)MCl{η2-P,P′-(Ph2P)2NMe}]I (M=Rh 3, Ir 4), can be prepared by N-functionalization of co-ordinated dppa ligand in complexes [(η5-C5Me5)MCl{η2-P,P′-(Ph2P)2NH}]BF4. The tetrafluoroborate derivatives, [(η5-C5Me5)MCl{η2-P,P′-(Ph2P)2NMe}]BF4 (M=Rh 5, Ir 6) are prepared by reaction of complexes 14 with AgBF4 in acetone. All the compounds described are characterised by microanalysis, IR and NMR (1H, 31P{1H}) spectroscopy. The crystal structure of complex 5 is determined by X-ray diffraction methods. The complex exhibits a pseudo-octahedral molecular structure with a C5Me5 group occupying three co-ordination positions and a bidentate chelate P,P′-bonded ligand and a chloride atom completing the co-ordination sphere.  相似文献   

18.
The (borole)iodide complex [(η5-C4H4BPh)RhI]4 reacts with the carborane anion [Carb′] (Carb′ = 9-SMe2-7,8-C2B9H10) giving (Carb′)Rh(η5-C4H4BPh) (2). Reactions of 2 with dicationic fragments [LM]2+ afford the μ-borole triple-decker complexes [(Carb′)Rh(μ-η55-C4H4BPh)ML]2+ [LM = CpIr (4), (Carb′)Rh (7)] or the arene-type complexes [(Carb′)Rh(μ-η56-C4H4BPh)ML]2+ [LM = CpRh (3), (Carb′)Ir (8)]. The structure of 4(BF4)2 was determined by X-ray diffraction.  相似文献   

19.
The complexes [(η5-C5H5)RhCl2]2 and [(η5-C5Me5)RhCl2]2 react with stoichiometric amounts of isocyanide ligands L to give (η5-C5H5)RhLCl2 and (η5-C5Me5)RhLCl2 (L = CNC6H11, CNC6H4CH3-p); an excess of ligand L reacts further with (η5-C5Me5)RhLCl2 to give the cationic complex [(η5-C5Me5)RhL2Cl]+ which was isolated as tetraphenylborate salt. The cationic complexes [(η5-C5Me5)RhL(PPh3)Cl]+ and [(η5-C5Me5)Rh(Ph2PC2H4PPh2)Cl]+ were obtained in the reaction of (η5-C5Me5)RhLCl2 with PPh3 and Ph2PC2H4PPh2 respectively. Unidentified solids which do not contain the cyclopentadienyl moiety were obtained in the analogous reactions of (η5-C5H5)RhLCl2 with an excess of isocyanide or of tertiary phosphine.The complexes (η5-C5H5)Rh(CNC6H11)Cl2 and (η5-C5Me5)Rh(CNC6H11)Cl2 react with SCN? or SeCN? giving the corresponding dithiocyanate or diselenocyanate derivatives in which the pseudohalogen groups are S- or Se-bonded to the metal atom. The analogous reactions with C6Cl5MgCl gave the chiral complexes (η5-C5H5)Rh(CNC6H11)(C6Cl5)Cl and (η5-C5Me5)Rh(CNC6H11)(C6Cl5)Cl.The potentially chelating anion Ph2PSS? reacts with (η5-C5H5)Rh(CNC6Hn11)Cl2 and (η5-C5Me5)Rh(CNC6H11)Cl2 to give (η5-C5H5)Rh(CNC6H11)(SSPPh3)Cl and (η5-C5Me5)Rh(CNC6H11)(SSPPh2)Cl in which the dithio ligand acts as monodentate; these compounds react with MeI or EtI to give the dihalide derivatives and the esters Ph2PSSMe and PSSEt. The complex [(η5-C5Me5)Rh(CNC6H11)(SSPPh2)]Cl was obtained by refluxing a benzene solution of the corresponding neutral complex; the cyclopentadienyl derivative failed to give the analogous chelate complex.The complexes (η5-C5H5)RhLCl2, (η5-C5Me5)RhLCl2 and [(η5-C5Me5)RhL2Cl]+ (L = CNC6H11) were found to be unreactive towards amines.  相似文献   

20.
The reaction of [(η5-C5Me5)M(μCl)Cl]2 with the ligand (LL) in the presence of sodium methoxide yielded compounds of general formula [(η5-C5Me5)M(LL)Cl] (1–10) (where M = Ir or Rh and LL = NO or OO chelate ligands). Azido complexes of formulation [(η5-C5Me5)M(LL)N3] (11–20) have been prepared by the reaction of [(η5-C5Me5)M(μN3)(X)]2 (X = Cl or N3) with the corresponding ligands or by the direct reaction of [(η5-C5Me5)M(LL)Cl] with NaN3. These azido complexes [(η5-C5Me5)M(LL)N3] undergo 1,3-dipolar cycloaddition reaction with substituted alkynes in CH2Cl2 and for the first time in ethanol at room temperature to yield iridium (III) and rhodium (III) triazoles (21–28). The compounds were characterized on the basis of spectroscopic data, and the molecular structures of 2 and 26 have been established by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号