首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Non-covalent (H-bonding) interactions, either intramolecular or with the surrounding medium, have a major influence on the activity of natural and synthetic phenolic antioxidants, due to the modulation of their reactivity with radical species, such as peroxyl radicals. Different cases can be distinguished. (i) Intra- or inter-molecular H-bonding involving the reactive -OH moiety will depress the antioxidant activity if the -OH acts as H-bond donor, while the opposite will generally occur if it acts as H-bond acceptor. (ii) Remote intra- and inter-molecular H-bonding, involving a distant -OH group (in polyphenols) or a ring substituent, may increase or decrease the reactivity of an antioxidant toward free radicals, depending on whether the stabilization produced by the H-bond increases or decreases along the reaction coordinate, on proceeding from reactants to the transition state. In this Perspective, the role of non-covalent interactions in the complex chemistry of natural polyphenolic antioxidants is discussed with the aid of literature data on simplified model compounds, aiming at the composition of a clear picture that might guide future research.  相似文献   

2.
Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.  相似文献   

3.
4.
Aqueous extracts of green yerba maté (Ilex paraguariensis) and green tea (Camellia sinensis) are good sources of phenolic antioxidants, as already described in the literature. The subject of this study were organic extracts from yerba maté, both green and roasted, and from green tea. Their phenolic profiles were characterized by direct infusion electrospray insertion mass spectrometry (ESI-MS) and their free radical scavenging activity was determined by the DPPH assay. Organic extracts containing phenolic antioxidants might be used as natural antioxidants by the food industry, replacing the synthetic phenolic additives used nowadays. Ethanolic and aqueous extracts from green yerba maté, roasted yerba maté and green tea showed excellent DPPH scavenging activity (>89%). The ether extracts from green and roasted yerba maté displayed a weak scavenging activity, different from the behavior observed for the green tea ether extract. The main phenolic compounds identified in green yerba maté water and ethanolic extracts were: caffeic acid, quinic acid, caffeoyl glucose, caffeoylquinic acid, feruloylquinic acid, dicaffeoylquinic acid and rutin. After the roasting process two new compounds were formed: caffeoylshikimic acid and dicaffeoylshikimic acid. The ethanolic extracts from yerba maté, both roasted and green, with lower content of phenolic compounds (3.80 and 2.83 mg/mL) presented high antioxidant activity and even at very low phenolic concentrations, ether extract from GT (0.07 mg/mL) inhibited DPPH over 90%.  相似文献   

5.
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using the technique of high-speed counter-current chromatography (HSCCC). The phenolic composition in Moringa oleifera leaves was first analyzed qualitatively and quantitatively by UPLC-Q-Exactive Orbitrap/MS and UPLC-QqQ/MS, respectively, indicating that quercetin and kaempferol derivatives, phenolic acid and apigenin are the main polyphenols in Moringa oleifera leaves, with quercetin and kaempferol derivatives predominating. Furthermore, the conditions of HSCCC for large-scale separation of polyphenols from Moringa oleifera leaves were optimized, which included the selection of the solvent system, flow rate and the sample load. Only by one-step HSCCC separation (within 120 min) under the optimized conditions, six quercetin and kaempferol derivatives, a phenolic acid and an apigenin could be individually isolated at a large scale (yield from 10% to 98%), each of which possessed high purity. Finally, the isolated polyphenols and phenolic extract from Moringa oleifera leaves (MLPE) were verified to have strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells, suggesting that these compounds would contribute to the main beneficial effects of Moringa oleifera leaves.  相似文献   

6.
In this study, phenolic compounds from an aqueous protein by-product from rapeseed meal (RSM) were identified by HPLC-DAD and HPLC-ESI-MS, including sinapine, sinapic acid, sinapoyl glucose, and 1,2-di-sinapoyl gentibiose. The main phenolic compound in this by-product was sinapine. We also performed acid hydrolysis to convert sinapine, and sinapic acid derivatives present in the permeate, to sinapic acid. The adsorption of phenolic compounds was investigated using five macroporous resins, including XAD4, XAD7, XAD16, XAD1180, and HP20. Among them, XAD16 showed the highest total phenolic contents adsorption capacities. The adsorption behavior of phenolic compounds was described by pseudo-second-order and Langmuir models. Moreover, thermodynamics tests demonstrated that the adsorption process of phenolic compounds was exothermic and spontaneous. The highest desorption ratio was obtained with 30% (v/v) and 70% (v/v) ethanol for sinapine and sinapic acid, respectively, with a desorption ratio of 63.19 ± 0.03% and 94.68 ± 0.013%. DPPH and ABTS tests revealed that the antioxidant activity of the hydrolyzed fraction was higher than the non-hydrolyzed fraction and higher than the one of vitamin C. Antioxidant tests demonstrated that these phenolic compounds could be used as natural antioxidants, which can be applied in the food industry.  相似文献   

7.
Honey is a well-known natural sweetener and is rich in natural antioxidants that prevent the occurrence of oxidative stress, which is responsible for many human diseases. Some of the biochemical compounds in honey that contribute to this property are vitamins and phenolic compounds such as phenolic acids and flavonoids. However, the extent to which these molecules contribute towards the antioxidant capacity in vitro is inconsistently reported, especially with the different analytical methods used, as well as other extrinsic factors that influence these molecules’ availability. Therefore, by reviewing recently published works correlating the vitamin, total phenolic, and flavonoid content in honey with its antioxidant activities in vitro, this paper will establish a relationship between these parameters. Based on the literature, vitamins do not contribute to honey’s antioxidant capacity; however, the content of phenolic acids and flavonoids has an impact on honey’s antioxidant activity.  相似文献   

8.
In this study, the total phenolic amounts and antioxidant activities of plant extracts obtained from some common Mediterranean plant species collected from different places in Jordan were determined. The phenolic constituents of these extracts were also determined using HPLC. The total phenolic amounts ranged from 52.8 to 876.9 mg GAE per 100 g dry material. The antioxidant activities were evaluated according to the 2,2-diphenyl-1-picrylhydrazyl radical scavenger method. Sage (Salvia officinalis) showed the highest antioxidant activity (91%), while the lowest (11.3%) was seen in parsley (Petroselinum crispum). A strong correlation (r = 0.85) between antioxidant activity and total phenolic content was found. The phenolic compounds identified by HPLC were gallic acid, protocatechuic acid, catechin, gentisic acid, chlorogenic acid, vanillic acid, syringic acid, caffeic acid, epicatechin and benzoic acid. All the investigated plants contain gallic acid, whose phenolic content ranged from 0.4 to 37.8 mg per 100 g, catechin (0.3-339.9 mg per 100 g), protocatechuic acid (0.3-41.9 mg per 100 g) and gentisic acid (0.3-35.8 mg per 100 g), while caffeic acid (0.3-2.6 mg per 100 g) was detected in six species only. These natural plant phenolics could thus be a good source of antioxidants for applications in food.  相似文献   

9.
Our previous study indicated that star fruit (Averrhoa carambola L.) is a very good source of natural antioxidants. However, it was still not clear which compounds were responsible for its antioxidant properties. The purpose of this study is to separate and identify compounds that contribute to total antioxidant activity in star fruit using HPLC and mass spectrometry (MS). HPLC coupled with a diode array detector (DAD) was used to characterise antioxidant peak in the juice or residue extract through spiking with free radicals. By analysing the antioxidant capacity and chromatograms of fractions from solid phase extraction, main antioxidants were attributed to phenolic compounds. The peaks were identified as L-ascorbic acid, (-)epicatechin and gallic acid in gallotannin forms. Other antioxidant peaks were further investigated using HPLC-ESI-MS-MS. Identification was confirmed with electronspray ionisation (ESI) MS-MS spectra of pure standards and singly-linked proanthocyanidins from pycnogenol. The major antioxidants were initially attributed to singly-linked proanthocyanidins that existed as dimers, trimers, tetramers and pentamers of catechin or epicatechin.  相似文献   

10.
Prevention of oxidative DNA damage due to hydroxyl radical is important for the prevention and treatment of disease. Because of their widely recognized antioxidant ability, 12 polyphenolic compounds were assayed by gel electrophoresis to directly quantify the inhibition of DNA damage by polyphenols with Fe(2+) and H2O2. All of the polyphenol compounds have IC50 values ranging from 1-59 microM and inhibit 100% of DNA damage at 50-500 microM concentrations. Gel electrophoresis results with iron(II)EDTA and UV-vis spectroscopy experiments confirm that binding of the polyphenol to iron is essential for antioxidant activity. Furthermore, antioxidant potency of polyphenol compounds correlates to the pKa of the first phenolic hydrogen, representing the first predictive model of antioxidant potency based on metal-binding. Understanding this iron-coordination mechanism for polyphenol antioxidant activity will aid in the design of more-potent antioxidants to treat and prevent diseases caused by oxidative stress, and help develop structure-activity relationships for these compounds.  相似文献   

11.
Phytochemical investigations of Matricaria chamomilla L. (Asteraceae) stated the presence of several compounds with an established therapeutic and antioxidant potential. The chamomile non-enzymatic antioxidant system includes low molecular mass compounds, mainly polyphenols such as cinnamic, hydroxybenzoic and chlorogenic acids, flavonoids and coumarins. The objective of this work was to evaluate the role of the non-enzymatic antioxidant system after stimulation by ethylene in tetraploid chamomile plants. Seven days of ethylene treatment significantly increased the activity of phenylalanine ammonia-lyase, which influenced the biosynthesis of protective polyphenols in the first step of their biosynthetic pathway. Subsequently, considerable enhanced levels of phenolic metabolites with a substantial antioxidant effect (syringic, vanillic and caffeic acid, 1,5-dicaffeoylquinic acid, quercetin, luteolin, daphnin, and herniarin) were determined by HPLC-DAD-MS. The minimal information on the chlorogenic acids function in chamomile led to the isolation and identification of 5-O-feruloylquinic acid. It is accumulated during normal conditions, but after the excessive effect of abiotic stress, its level significantly decreases and levels of other caffeoylquinic acids enhance. Our results suggest that ethephon may act as a stimulant of the production of pharmaceutically important non-enzymatic antioxidants in chamomile leaves and thus, lead to an overall change in phytochemical content and therapeutic effects of chamomile plants, as well.  相似文献   

12.
The dietary consumption of fruits and vegetables is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds found in vegetable products. Sweet and sour cherries contain several antioxidants and polyphenols that possess many biological activities, such as antioxidant, anticancer and anti-inflammation properties. The review describes the effect of environment and other factors (such as production, handling and storage) on the nutritional properties of cherries, with particular attention to polyphenol compounds. Moreover the health benefits of cherries and their polyphenols against human diseases such as heart disease, cancers, diabetes are reviewed.  相似文献   

13.
A novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) method was developed for the selective determination of polyphenols (flavonoids, simple phenolic and hydroxycinnamic acids) in complex plant matrices. The method combines chromatographic separation, constituent analysis, and post-column identification of antioxidants in plant extracts. The separation of polyphenols was performed on a C18 column using gradient elution with two different mobile phase solutions, i.e., MeOH and 0.2% o-phosphoric acid. The HPLC-separated antioxidant polyphenols in the extracts react with copper(II)-neocuproine (Cu(II)-Nc) reagent in a post-column reaction coil to form a derivative. The reagent is reduced by antioxidants to the copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The negative peaks of antioxidant constituents were monitored by measuring the increase in absorbance due to Cu(I)-Nc. The detection limits of polyphenols at 450 nm (in the range of 0.17-3.46 μM) after post-column derivatization were comparable to those at 280 nm UV detection without derivatization. The developed method was successfully applied to the identification of antioxidant compounds in crude extracts of Camellia sinensis, Origanum marjorana and Mentha. The method is rapid, inexpensive, versatile, non-laborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of antioxidant constituents of complex plant samples.  相似文献   

14.
15.
Dilek Ozyurt  Resat Apak 《Talanta》2007,71(3):1155-1165
Dietary antioxidants widely found in fruits and vegetables may serve the task of reducing oxidative damage in humans induced by free radicals and reactive oxygen species under ‘oxidative stress’ conditions. The aim of this work is to develop a simple, low-cost, sensitive, and diversely applicable indirect spectrophotometric method for the determination of total antioxidant capacity of several plants. The method is based on the oxidation of antioxidants with cerium(IV) sulfate in dilute sulfuric acid at room temperature. The Ce(IV) reducing capacity of the sample is measured under carefully adjusted conditions of oxidant concentration and pH such that only antioxidants and not other organic compounds would be oxidized. The spectrophotometric determination of the remaining Ce(IV) was performed after completion of reaction with antioxidants. Quercetin and gallic acid were used as standards for flavonoids and phenolic acids, respectively, and results of antioxidant measurements were reported as trolox equivalents. The developed procedure was successfully applied to the assay of total antioxidant capacity due to simple compounds such as trolox, quercetin, gallic acid, ascorbic acid, catechin, naringin, naringenin, caffeic acid, chlorogenic acid, ferulic acid, and p-coumaric acid, and due to phenolic acids and flavonoids in the arieal parts of nettle (Urtica Dioica L.). Blank correction of significantly absorbing plant extracts at 320 nm could be made with the aid of spectrophotometric titration. Plant selection was made in respect to high antioxidant content, and extraction was made with water. The proposed method was reproducible, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds were correlated to those found by reference methods such as ABTS and CUPRAC. Since the TEAC coefficients found with the proposed method of naringin-naringenin and rutin-catechin pairs were close to each other, this Ce(IV)-based assay probably caused the simultaneous hydrolysis of flavonoid glycosides to the corresponding aglycones and their subsequent oxidation such that the hydrolysis products exhibed antioxidant capacities roughly proportional the number of -OH groups contained in a molecule.  相似文献   

16.
Over the past decade, there has been growing interest in polyphenols’ research since these compounds, as antioxidants, have several health benefits, such as preventing neurodegenerative diseases, inflammation, cancer, cardiovascular diseases, and type 2 diabetes. This study implements an analytical method to assess the total phenolic content (TPC) in essential oils using Folin–Ciocalteu’s phenol reagent and quantifies the individual phenolic compounds by liquid chromatography. Thus, the research design and methodology included: (1) extraction of essential oil from dried thyme leaves by hydrodistillation; (2) spectrophotometric measurement of TPC by Folin–Ciocalteu method; and (3) identification and quantification of individual phenolic compounds by high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS). Results revealed a TPC of 22.62 ± 0.482 mg GAE/100 µL and a polyphenolic profile characterized by phenolic acids (52.1%), flavonoids (16.1%), and other polyphenols (31.8%). Thymol, salvianolic acid A, and rosmarinic acid were the major compounds of thyme essential oil. The proposed analytical procedure has an acceptable level of repeatability, reproducibility, linearity, LOD (limit of detection), and LOQ (limit of quantification).  相似文献   

17.
The objective of this paper is to compare conventional, ultrasound, microwave, and French press methods for the extraction of antioxidant compounds from Decatropis bicolor in an aqueous medium. This plant is widely used in Mexican traditional medicine for breast cancer treatment. Despite that, there are few studies on D. bicolor. Two response surface designs were applied to establish the best conditions of the liberation of antioxidants from D. bicolor, which were determined by DPPH• and Ferric Reducing Antioxidant Power (FRAP) techniques. The total phenolic content was evaluated by the Folin-Ciocalteu method. The results showed that D. bicolor is a source of antioxidants (669–2128 mg ET/100 g and 553–1920 mg EFe2+/100 g, respectively) and phenolic compounds (2232–9929 mg EGA/100 g). Among the physical factors that were analyzed, the temperature was the determinant factor to liberate the compounds of interest by using low concentrations of the sample and short times of extraction. The French press was the most efficient method, obtaining values of antioxidant activity and phenolic compounds even higher than those reported by using extraction methods with solvents such as methanol.  相似文献   

18.
In this study, wild olive fruits were evaluated for the occurrence of phenolic antioxidant components and valuable nutrients which are distributed wildly in Soon valley of Pakistan. The shade-dried fruits of wild olive were extracted using different solvents to recover phenolic antioxidants. The highest concentration of extractable antioxidant components was recovered from tested fruits using aqueous ethanol compared to other solvents used. Crude concentrated extracts (CCEs) and phenolic rich fractions (PRFs) of tested fruits using hydroxyethanol were found to contain higher amount of total phenolic compounds and total flavonoid compounds along with superior biological attributes. According to ICP-OES analysis, potassium (17.96 g/kg) was the dominant macro element among other identified twenty-five minerals. The tested wild olive fruits juice was found to contain individual natural sugars including galactose (4.92 g/100 g dry weight), sucrose (2.75 g/100 g dry weight), glucose (0.73 g/100 g dry weight); and succinic acid (8.80 mg/100 g of dry matter) as major organic acid when analyzed on HPLC. Oleic acid (47.41 %) was the major monounsaturated fatty acid in the oil extracted from tested fruits. The concentration of phenolic antioxidants and biological activities vary significantly (p < 0.05) among extracting systems used. A strong correlation was also recorded among total phenolic (TP), total flavonoids (TF) and biological attributes of tested wild olive fruits. The results of this study explored wild olive fruits as a propitious source of natural phenolic components and valuable nutrients which reveal its potential use in the development of functional food and nutra-pharmaceuticals.  相似文献   

19.
Phenolic acids are found in many plant-based natural antioxidants and are known to offer diverse health-promoting effects such as antimelanogenic, antioxidant, antineoplastic, and bacteriostatic properties. Furthermore, they not only inhibit pathogen growth but also have little toxicity to human beings. Therefore, in this study we treated cotton fabrics with two different phenolic acids, gallic acid (GA) and 4-hydroxybenzoic acid (4-HBA), through a pad-dry cure process, and investigated the properties such as mechanical properties, antibacterial ability, antioxidant ability, etc. Consequently, the phenolic acid treatment did not have significant influence on color, touch, and tensile strength of cotton fabrics. However, it was found that the cotton fabrics treated by both GA and 4-HBA showed high antibacterial ability against Staphylococcus aureus and Klebsiella pneumonia; however, only the GA treated cotton fabrics showed reasonable antioxidant ability.  相似文献   

20.
The extraction of phenolic antioxidants from solid plant raw materials (bark and roots) under the action of an electric current was studied. A relationship between the amount and antioxidant activity of extracted phenolic compounds with the particle size and the procedure of grinding plant raw material was found. The most complete extraction of phenols was reached in experiments with ground samples. The resulting extracts from the bark of arrowwood (Viburnum opulus L.) and the root of burnet (Sanguisorba officinalis L.) were superior to the extracts obtained by circulation extraction in a Soxhlet extractor in terms of the antioxidant activity, and they increased the stability of sunflower oil to oxidation by a factor of 2–3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号