首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
The vibrational frequencies and corresponding normal mode assignments of 1,1-dicyanocyclopropane are examined theoretically using the Gaussian98 set of quantum chemistry codes. All normal modes were successfully assigned to one nine types of motion predicted by a group theoretical analysis (C-H stretch, C[triple bond]N stretch, C-C stretch, C-C[triple bond]N bend, C-C-C bend, CH2 scissors, CH2 wag, CH2 rock, CH2 twist) utilizing the C2v symmetry of the molecule. The molecular orbitals of 1,1-dicyanocyclopropane are also examined.  相似文献   

2.
The normal mode frequencies and corresponding vibrational assignments of Triethynylmethylsilane (CH3Si(CCH)3) are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (Si-C stretch, C triple bond C stretch, C-H stretch, C triple bond C-H bend, Si-C triple bond C bend, C-Si-C bend, H-C-H bend, CH3 wag, and CH3 twist) utilizing the C3v symmetry of the molecule. A set of uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

3.
The normal mode frequencies and corresponding vibrational assignments of triethynylmethylgermane are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis Ge-C stretch, C[triple bond]C stretch, C-H stretch, C[triple bond]C-H bend, Ge-C[triple bond]C bend, C-Ge-C bend, H-C-H bend, CH3 wag, and CH3 twist) utilizing the C3v symmetry of the molecule. Uniform scaling factors were derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

4.
The normal mode frequencies and corresponding vibrational assignments of diethynyldimethylsilane are examined theoretically using the Gaussian 98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (Si-C stretch, C[triple bond]C stretch, C-H stretch, C[triple bond]C-H bend, Si-C[triple bond]C bend, C-Si-C bend, H-C-H bend, CH3 wag, and CH3 twist) utilizing the C3v symmetry of the molecule. A set of uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

5.
The normal mode frequencies and corresponding vibrational assignments of Triethynylmethylstannane (SnCH(3)(CCH)(3)) are examined theoretically using the Gaussian 98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (Sn-C stretch, C[triple bond]C stretch, C-H stretch, C[triple bond]C-H bend, Sn-C[triple bond]C bend, C-Sn-C bend, H-C-H bend, CH(3) wag, and CH(3) twist) utilizing the C(3v) symmetry of the molecule. A set of uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

6.
The normal mode frequencies and corresponding vibrational assignments of tetrafluoroformaldazine (F(2)CNNCF(2)) are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of nine types of motion predicted by a group theoretical analysis (C-F stretch, C[triple bond]N stretch, N-N stretch, C=C-N bend, CF(2) wag, CF(2) rock CF(2) scissors, CF(2) twist, and C=N-N=C torsion) utilizing the C(2h) symmetry of the molecule. Uniform scaling factors was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

7.
The normal mode frequencies and corresponding vibrational assignments of trimethylarsine oxide are examined theoretically using the Gaussian 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of eight types of motion (As-C stretch, As=O stretch, C-H stretch, C-As-C bend, As=O bend, H-C-H bend, CH3 wag, and CH3 twist) utilizing the C3v symmetry of the molecule. Calculations were performed at the Hartree-Fock, DFT(B3LYP), and MP2 levels of theory using the standard 6-311G** basis. Calculated infrared intensities and Raman activities are reported.  相似文献   

8.
The normal mode frequencies and corresponding vibrational assignments of phosphorous tricyanide (P(CN)(3)) are examined theoretically using the Gaussian98 set of quantum chemistry codes. Each of the vibrational modes was assigned to one of four types of motion predicted by a group theoretical analysis P-C stretch, CN stretch, P-C[triple bond]C bend, and C-P-C bend) utilizing the C(3v) symmetry of the molecule. A uniform scaling factor was derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

9.
Seven kinds of sp(3)α-C-H activation/C-C formation reactions of alcohols and ethers have been reviewed in this tutorial review, from the viewpoint of both methodology and synthetic application, towards the efficiency, chemo-, regio- and stereoselectivity, catalytic system, substrate scope and mechanistic study. Section 2 describes radical-mediated α-C-H activation and addition/elimination of ethers with unsaturated (C=C and C[triple bond]C) species. Sections 3-8 discuss the α-C-H activation and additions of alcohols and/or ethers with unsaturated (C=C, C[triple bond]C, C=O and C=N) compounds, which involve the key processes of radical mediation, carbenoid insertion, 1,5-H-migration, oxidative dehydrogenation coupling, transfer hydrogenative coupling, and metal-mediated C=C insertion into the C-H bond.  相似文献   

10.
The vibrational frequencies and corresponding normal mode assignments of digermylcarbodiimide are examined theoretically using the Gaussian98 set of quantum chemistry codes. All normal modes were successfully assigned to one of eight types of motion (N=C=N asymmetric stretch, N=C=N symmetric stretch, Ge-H stretch, Ge-N stretch, H-Ge-H bend, GeH(3) wag, GeH(3) twist, and Ge-N. . .N-Ge torsion) utilizing the C(2) symmetry of the molecule. Uniform scaling factors were derived for each type of motion. Predicted infrared and Raman intensities are reported.  相似文献   

11.
Computations at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G* level of theory indicate that neutral C(6)CO is a stable species. The ground state of this neutral is the singlet cumulene oxide :C=C=C=C=C=C=C=O. The adiabatic electron affinity and dipole moment of singlet C(6)CO are 2.47 eV and 4.13 D, respectively, at this level of theory. The anion (C(6)CO)-* should be a possible precursor to this neutral. It has been formed by an unequivocal synthesis in the ion source of a mass spectrometer by the S(N)2(Si) reaction between (CH(3))(3)Si-C(triple bond)C-C(triple bond)C-C(triple bond)C-CO-CMe(3) and F(-) to form (-)C(triple bond)C-C(triple bond)C-C(triple bond)C-CO-Me(3) which loses Me(3)C* in the source to form C(6)CO(-)*. Charge stripping of this anion by vertical Franck-Condon oxidation forms C(6)CO, characterised by the neutralisation-reionisation spectrum (-NR(+)) of C(6)CO(-*), which is stable during the timeframe of this experiment (10(-6) s).  相似文献   

12.
Vibrational characteristics of CD3CN solutions of LiClO4 and NaClO4 have been studied by means of infrared and Raman spectroscopy. Blue shifts of 22 and 11 cm(-1) of the v2 C[triple bond]N stretch are observed resulting from interaction of CD3CN with Li+ and Na+, respectively. The number of primary solvation sites of both Li+ and Na+ in acetonitrile is believed to be four from the comparison of the Raman intensities of the C[triple bond]N stretch for free CD3CN and those coordinated to Li+ and Na+. Evidently formation of contact ion pairs of the cation (Li+ or Na+) and anion (ClO4-) is more probable at a higher concentration of the salt. The characteristics of the v2 C[triple bond]N stretch, v4 C-C stretch, and v8 CCN deformation bands vary substantially upon coordination, while other vibrational bands are relatively immune to the donor-acceptor interaction. DFT calculations have also been performed at the BLYP/6-31 + G(2d,p) level to examine the structures and vibrational characteristics of CD3CN coordinated to Li+ and Na+. The calculated results are in good agreement with the observed vibrational characteristics.  相似文献   

13.
The interactions of cyanoacetylene and diacetylene with a Si(111)-7 x 7 surface have been studied as model systems to mechanistically understand the chemical binding of unsaturated organic molecules to diradical-like silicon dangling bonds. Vibrational studies show that cyanoacetylene mainly binds to the surface through a diradical reaction involving both cyano and C[triple bond]C groups with an adjacent adatom-rest atom pair at 110 K, resulting in an intermediate containing triple cumulative double bonds (C=C=C=N). On the other hand, diacetylene was shown to the covalently attached to Si(111)-7 x 7 only through one of its C[triple bond]C groups, forming an enynic-like structure with a C=C-C[triple bond]C skeleton. These chemisorbed species containing triple cumulative double bonds (C=C=C=N) and C=C-C[triple bond]C may be employed as precursors (or templates) for further construction of bilayer organic films on the semiconductor surfaces.  相似文献   

14.
The vibrational frequencies and corresponding normal mode assignments of urazole are examined theoretically using the Gaussian98 set of quantum chemistry codes. All normal modes were successfully assigned to one of eight types of motion (N--H stretch, C=O stretch, C--N stretch, N--N stretch, N--H bend, C=O bend, N--C--N bend, ring torsion) utilizing the C2 symmetry of the molecule. The molecular orbitals of urazole are examined. The simultaneous double inversion of the amine groups in urazole is also examined.  相似文献   

15.
The normal mode frequencies and corresponding vibrational assignments of 1,6-dicarba-closo-hexaborane(6) are examined theoretically using the GAUSSIAN98 set of quantum chemistry codes. All normal modes were successfully assigned to one of six types of motion predicted by a group theoretical analysis (B-B stretch, B-C stretch, B-H stretch, C-H stretch, B-H bend, and C-H bend) utilizing the D(4h) symmetry of the molecule. The vibrational modes of the naturally isotopically substituted (1-(10)B, 2-(10)B 3-(10)B, and 4-(10)B) forms of 1,6-dicarba-closo-hexaborane(6) were also calculated and compared against experimental data. A complex pattern of frequency shifts and splittings is revealed.  相似文献   

16.
The covalent binding of acrylonitrile (CH(2)=CH-C triple bond N) and the formation of a C=C-C=N structure on Si(100) have been investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) calculations. For chemisorbed acrylonitrile, the absence of nu(C triple bond N) at 2245 cm(-1) and the appearance of nu(C=N) at 1669 cm(-1) demonstrate that the cyano group directly participates in the interaction with Si(100), which is further supported by XPS and UPS observations. Our experimental results and DFT calculations unambiguously demonstrate a [2 + 2] cycloaddition mechanism for acrylonitrile chemisorption on Si(100) through the binding of C triple bond N to Si dimers. The resulting chemisorbed monolayer with a C=C-C=N skeleton can serve as a precursor for further chemical syntheses of multilayer organic thin films in a vacuum and surface functionalization for in situ device fabrication.  相似文献   

17.
State-resolved reactions of CH3D molecules containing both C-H and C-D stretching excitation with Cl atoms provide new vibrational spectroscopy and probe the consumption and disposal of vibrational energy in the reactions. The vibrational action spectra have three different components, the combination of the C-H symmetric stretch and the C-D stretch (nu1 + nu2), the combination of the C-D stretch and the C-H antisymmetric stretch (nu2 + nu4), and the combination of the C-D stretch and the first overtone of the CH3 bend (nu2 + 2nu5). The simulation for the previously unanalyzed (nu2 + nu4) state yields a band center of nu0 = 5215.3 cm(-1), rotational constants of A = 5.223 cm(-1) and B = 3.803 cm(-1), and a Coriolis coupling constant of zeta = 0.084. The reaction dynamics largely follow a spectator picture in which the surviving bond retains its initial vibrational excitation. In at least 80% of the reactive encounters of vibrationally excited CH3D with Cl, cleavage of the C-H bond produces CH2D radicals with an excited C-D stretch, and cleavage of the C-D bond produces CH3 radicals with an excited C-H stretch. Deviations from the spectator picture seem to reflect mixing in the initially prepared eigenstates and, possibly, collisional coupling during the reaction.  相似文献   

18.
The reactions of the ethynyl radical (C(2)H) with propyne and allene are studied at room temperature using an apparatus that combines the tunability of the vacuum ultraviolet radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory with time-resolved mass spectrometry. The C(2)H radical is prepared by 193-nm photolysis of CF(3)CCH and the mass spectrum of the reacting mixture is monitored in time using synchrotron-photoionization with a dual-sector mass spectrometer. Analysis using photoionization efficiency curves allows the isomer-specific detection of individual polyynes of chemical formula C(5)H(4) produced by both reactions. The product branching ratios are estimated for each isomer. The reaction of propyne with ethynyl gives 50-70% diacetylene (H-C[triple bond]C-C[triple bond]C-H) and 50-30% C(5)H(4), with a C(5)H(4)-isomer distribution of 15-20% ethynylallene (CH(2)=C=CH-C[triple bond]CH) and 85-80% methyldiacetylene (CH(3)-C[triple bond]C-C[triple bond]CH). The reaction of allene with ethynyl gives 35-45% ethynylallene, 20-25% methyldiacetylene and 45-30% 1,4-pentadiyne (HC[triple bond]C-CH(2)-C[triple bond]CH). Diacetylene is most likely not produced by this reaction; an upper limit of 30% on the branching fraction to diacetylene can be derived from the present experiment. The mechanisms of polyynes formation by these reactions as well as the implications for Titan's atmospheric chemistry are discussed.  相似文献   

19.
Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n=1-5) and partially hydrogenated CnH4 (n=7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n=1-5) intermediates are unambiguously identified, while HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=C=CH2, HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=CH2 (vinyltriacetylene) and HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time.  相似文献   

20.
YANG Jing 《结构化学》2014,(1):122-134
A theoretical investigation of the reaction mechanisms for C-H and C-C bond activation processes in the reaction of Ni with cycloalkanes C,,H2. (n = 3-7) is carried out. For the Ni + CnH2, (n = 3, 4) reactions, the major and minor reaction channels involve C-C and C-H bond activations, respectively, whereas Ni atom prefers the attacking of C-H bond over the C-C bond in CnH2n (n = 5=7). The results are in good agreement with the experimental study. In all cases, intermediates and transition states along the reaction paths of interest are characterized, It is found that both the C-H and C-C bond activation processes are proposed to proceed in a one-step manner via one transition state. The overall C-H and C-C bond activation processes are exothermic and involve low energy barriers, thus transition metal atom Ni is a good mediator for the activity of cycloalkanes CnH2n (n = 3 -7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号