首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-crystal X-ray diffraction analysis was used to determine the structure of a racemic diastereomer of the agricultural fungicide propiconazole [1-(2-(2,4-dichlorophenyl)-4-n-propyl-1,3-dioxolane-2-yl-methyl)-1-H-1,2,4-triazole] and of two by-products (a symmetrical 1,3,4-triazole racemic-constitutional isomer and a propiconazole ditriazole analogue). All three crystalline racemic-diastereomers had (2R,4S)/(2S,4R)-stereochemistry in which then-propyl group was observed in atrans-to-phenyl disposition. Propiconazole (2R,4S)/(2S,4R)-diastereomer gives crystals belonging to the monoclinic space group P21,/a, and, at 293 K,a=8.1192(3),b=18.9769(6),c=10.7137(4) å,Β=99.765(3)?,V=1626.8(1) å3, Z=4,R(F)=0.060, andR w(F)=0.058. The constitutional isomer by-product (2R,4S)/(2S,4R)-1-(2-(2,4-dichlorophenyl)-4-n-pro-pyl-1,3-dioxolane-2-yl-methyl)-1-H-1,3,4-triazole gives crystals belonging to the monoclinic space group P21/n, and, at 293 K,a=11.1763(6),b=10.7716(4),c=14.5804(8) å,Β=107.445(4)?,V=1674.6(1) å3, Z=4,R(F)=0.043, andR w(F)=0.043. The ditriazole byproduct (2R,4S)/(2S,4R)-1-(2-(2-chloro-4-(1,2,4-triazole-1-yl)phenyl)-4-n-propyl-1,3-dioxolane-2-yl-methyl)-1-H-1,2,4-triazole gives crystals belonging to the triclinic space group 1, and, at 193 K,a=5.3329(8),b=8.3738(7),c=20.240(2) å, α=84.213(6)?,Β=87.20(1)?,γ=86.23(1)?,V=896.5(2) å3, Z=2,R(F)=0.046, andR w(F)=0.051. The presence of both propiconazole (2R.4S)- and (2S,4R)-enantiomers enables the formation of a crystalline racemic modification, while the diastereomeric propiconazole (2R,4R)- and (2S,4S)-enantiomers are viscous oils. In the absence of its enantiomorphic partner, the propiconazole (2R,4S)- or (2S,4R)-enantiomers remain as viscous oils rather than form chiral crystals.  相似文献   

2.
《Tetrahedron: Asymmetry》2007,18(19):2358-2364
The preparation of the proline analogue (2S,3aS,7aS)-octahydroindole-2-carboxylic acid (Oic) and its enantiomer, (2R,3aR,7aR)-Oic, is described. A racemic precursor has been synthesized in good yield and subjected to HPLC resolution on a chiral column. The high efficiency of both the synthetic and chromatographic procedures has allowed the isolation of multigram quantities of each amino acid in enantiomerically pure form and suitably protected for use in peptide synthesis.  相似文献   

3.
DAZ-Xaa-OMe amino ester derivatives with Xaa = d/l-Ala, d/l-Val, l-Leu, l-Ile, l-Ser, l-β3-HAla, l-β3-HVal, l-β3-HLeu, (1S,2S)/(1R,2R)-ACHC (2-aminocyclohexanecarboxylic acid) and (1S,2S)/(1R,2R)-ACPC (2-aminocyclopentanecarboxylic acid), N-blocked as 6,7-dihydro-5H-dibenz[c,e]azepines (DAZ), have been synthesized and evaluated for the determination of the absolute configuration of α- and β-amino esters through the induced circular dichroism of the biphenyl chromophore.  相似文献   

4.
《Tetrahedron: Asymmetry》2003,14(13):1943-1949
Kinetic resolution of racemic 1-(benzofuran-2-yl)ethanols rac-1ad was performed by lipase-catalyzed enantiomer selective acylation (E≫100) yielding (1R)-1-acetoxy-1-(benzofuran-2-yl)ethanes (R)-2ad and (1S)-1-(benzofuran-2-yl)ethanols (S)-1ad in highly enantiopure form. The degree of enantiomer selectivity for enzymatic alcoholysis/hydrolysis processes starting from racemic 1-acetoxy-1-(benzofuran-2-yl)ethane rac-2 was also tested under various conditions including supercritical CO2 medium. Racemization-free lipase-catalyzed ethanolysis of the (1R)-1-acetoxy-1-(benzofuran-2-yl)ethanes (R)-2ad yielded almost quantitatively the enantiopure (1R)-1-(benzofuran-2-yl)ethanols (R)-1ad.  相似文献   

5.
A new route to synthesize cyclophellitol and epi-cyclophellitol from racemic starting materials in enantiopure forms has been developed. The synthesis involves a multi-enzymatic biotransformation pathway of the novel cyano-cyclitol (1R,4S,5R,6R)/(1S,4R,5S,6S)-4,5,6-trihydroxycyclohex-2-enecarbonitrile by a cooperative use of lipase, nitrile hydratase, and amidase.  相似文献   

6.
A strategy for the synthesis of the novel (6bR,7R,8S,9S,10S,10aR)-8-(benzyloxy)-7,9,10-trihydroxy-6b,7,8,9,10,10a-hexahydro-11H-benzo[a]carbazole-5,6-dione is reported. The key steps were the Michael addition of 2-hydroxy-1,4-naphthoquinone to 1-nitrocyclohexene or 3-O-benzyl-5,6-dideoxy-1,2-O-isopropylidene-6-nitro-α-d-xylo-hex-5-enefuranose and the diastereoselective intramolecular Henry reaction of 3-O-benzyl-5,6-dideoxy-5-C-(3′-hydroxy-1′,4′-naphthoquinon-2′-yl)-1,2-O-isopropylidene-6-nitro-α-d-glucofuranose to give the key (1S,2S,3S,4R,5R,6R)-3-(benzyloxy)-1,2,4-trihydroxy-5-(3′-hydroxy-1′,4′-naphthoquinon-2′-yl)-6-nitrocyclohexane. When 2-hydroxy-1,4-naphthoquinone was replaced by (1,4-dimethoxynaphthalen-2-yl)lithium, the novel (1R,2S,3S,4R,4aS,11bS)-2-(benzyloxy)-1,3,4-trihydroxy-1,2,3,4,4a,5-hexahydro-11bH-benzo[b]carbazole-6,11-dione was obtained.  相似文献   

7.
Hydroxymethylation of bicyclic allylsilane, (3aR,6R,6aS)-3,3a,6,6a-tetrahydro-6-(trimethylsilyl)-cyclopenta[c]furan-1-one with formaldehyde by Prins reaction proceeds via SE2' mechanism with the formation of anti-addition product. Some reactions of obtained (3aS,4S,6aR)-4-(hydroxymethyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]furan-1-one were investigated.  相似文献   

8.
The synthesis of racemic 8-fluorogalanthamine and its separation into (−)- and (+)-8-fluorogalanthamine (= (4aS,6R,8aS)- and (4aR,6S,8aR)-1-fluoro-4a,5,9,10,11,12-hexahydro-3-methoxy-11-methyl-6H-benzofuro[3a,3,2-ef][2]benzazepin-6-ol) is described.  相似文献   

9.
The syntheses of the terminally protected, crowned, Cα-tetrasubstituted α-amino acids with only axial chirality, the two diastereomers Boc-(S)-Bip[(R)-Binol-22-C-6]-OMe and Boc-(R)-Bip[(R)-Binol-22-C-6]-OMe, and their respective enantiomers Boc-(R)-Bip[(S)-Binol-22-C-6]-OMe and Boc-(S)-Bip[(S)-Binol-22-C-6]-OMe, all derived from 2′,1′:1,2; 1″,2″:3,4-dibenzcyclohepta-1,3-diene-6-amino-6-carboxylic acid (Bip), were performed by bis-alkylation with cyclization of racemic (R+S)-Boc-[HO]2-Bip-OMe, possessing two phenolic OH groups at the 6,6′-positions of the biphenyl frame of Bip, using (+)-(R)- and (−)-(S)-Binol[(OCH2CH2)2OTs]2 (2,2′-bis[5-tosyloxy-3-oxa-1-pentyloxy]-1,1′-binaphthyl), respectively, as the alkylating agent followed by chromatographic separation. Two series of terminally protected model peptides to the hexamer level, containing the (R)-Bip[(S)-Binol-22-C-6] residue at i and i+3 positions of the sequence, combined with either l-Ala or l-Ala/Aib, were synthesized by solution methods. Their 3D-structural analyses by FTIR absorption and NMR suggest that these peptides preferentially adopt folded secondary structures.  相似文献   

10.
《Tetrahedron: Asymmetry》2003,14(11):1495-1501
Enantiotopic selective reduction of 1-(benzofuran-2-yl)ethanones 1ad, 1-(benzofuran-2-yl)-2-hydroxyethanones 4ac and 2-acetoxy-1-(benzofuran-2-yl)ethanones 3ac was performed by baker's yeast for preparation of optically active (benzofuran-2-yl)carbinols [(S)-5ad, (S)-6ac and (R)-6ac, enantiomeric excess from 55 to 93% ee].  相似文献   

11.
Racemic trans 3-(9-fluorenylmethyloxycarbonylamino)-1-oxyl-2,2,5,5-tetramethylpyrrolidine-4-carboxylic acid (Fmoc-POAC-OH), prepared by conventional methods, was resolved upon esterification with (aR)-2,2′-dihydroxy-1,1′-binaphthyl. Separation of the obtained diastereomeric monoesters Fmoc-(±)-trans-POAC-O-(aR)-binaphthol by crystallization/chromatography, and removal of the chiral auxiliary by saponification of the aryl ester function furnished both enantiomers (+)-(3R,4R)-Fmoc-POAC-OH and (−)-(3S,4S)-Fmoc-POAC-OH. The absolute configuration of the asymmetric C3, C4 carbons of POAC were assigned from the induced circular dichroism of a flexible biphenyl probe present in the terminally protected dipeptide derivatives Boc-Bip-(+)-POAC-OMe and Boc-Bip-(−)-POAC-OMe (Bip, 2′,1′:1,2;1″,2″:3,4-dibenzcyclohepta-1,3-diene-6-amino-6-carboxylic acid). This assignment was confirmed by X-ray diffraction analysis of the diastereomeric monoester Fmoc-(+)-trans-POAC-O-(aR)-binaphthol, shown to be (aR,3R,4R). Solution synthesis of peptides to the hexamer level, based on the (3R,4R)-POAC enantiomer combined with (1S,2S)-2-aminocyclopentane-1-carboxylic acid, was carried out to examine coupling conditions at both C- and N-termini of the POAC residue, in view of further syntheses and 3D-structural investigations.  相似文献   

12.
《Tetrahedron: Asymmetry》2001,12(12):1779-1784
Crude Pseudomonas cepacia lipase (Amano PS-30) is a suitable biocatalyst for the kinetic resolution of the 1,2-cis-disubstituted cyclopentanoid building block (3aR*,4R*,6aS*)-(±)-4-hydroxymethyl-3,3a,4,6a-tetrahydrocyclopenta[b]furan-2-one through enantioselective transesterification. Enantiomerically enriched acetic acid (3aS,4S,6aR)-(+)-2-oxo-3,3a,4,6a-tetrahydro-2H-cyclopenta[b]furan-4-yl methyl ester was utilized in a formal synthesis of the iridoids (+)-isoiridomyrmecin and (−)-teucriumlactone.  相似文献   

13.
Synthesis was performed of individual methyl [(S,2R,3S)-4-nitro-1-oxo-1,3-diphenylbutan-2-yl]-(phenyl)phosphinate from racemic β-keto phosphinate and ω-nitrostyrene under the catalysis by nickel(II) complex with (1R,2R)-N,N'-dibenzylcyclohexane-1,2-diamine.  相似文献   

14.
Both racemic ethyl 5-iodo-2-methylcyclohexanecarboxylate (1), known as Mediterranean fruit fly attractant ceralure B1, and its (−)-(1R,2R,5R) enantiomer 1a were conveniently synthesized from commercially available racemic trans-6-methyl-3-cyclohexenecarboxylic acid 2 or its (1R,6R) enantiomer 2a. Key steps included an asymmetric Diels-Alder reaction using a sultam auxiliary and cyclization of the unwanted trans-5-iodo-trans-2-methylcyclohexanecarboxylic acid (8) to the intermediate lactone 7 (or 8a to 7a). The new method may circumvent chromatographic separations and seems amenable to scale-up.  相似文献   

15.
Naturally occurring (1S,2R,3R,5R,7aR)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-hyacinthacine A6, 2] together with unnatural (1S,2R,3R,7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine [(+)-7a-epi-hyacinthacine A1, 3] and (1S,2R,3R,5S,7aS)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-5,7a-diepi-hyacinthacine A6, 4] have been synthesized from a DALDP derivative [5, (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine], as the homochiral starting material. The synthetic process employed took advantages of Wittig methodology followed by internal lactamization, in the case of (+)-7a-epi-hyacinthacine A1 (3), and reductive amination for (+)-hyacinthacine A6 (2) and (+)-5,7a-diepi-hyacinthacine A6 (4).  相似文献   

16.
《Tetrahedron: Asymmetry》2001,12(4):643-649
9-Azabicyclo[6.2.0]dec-4-en-10-one (±)-2, obtained from cyclooctadiene by addition of chlorosulfonyl isocyanate, was N-hydroxymethylated to (±)-3 and then resolved by lipase-catalysed asymmetric acylation of the primary OH group at the (S)-stereogenic centre. High enantioselectivity (E=94) was observed when lipase PS and vinyl butyrate were used in di-iso-propyl ether at −15°C, resulting in the enantiomerically enriched ester 3a and alcohol 3b (e.e. ≥92%). Treatment of 3a and 3b with NH4OH/MeOH afforded the corresponding β-lactams (1R,8S)-2a and (1S,8R)-2b (e.e. ≥93%), potential starting compounds in anatoxin-a synthesis. The ring opening of lactams (±)-2, (±)-7, 3a and 3b, followed by reduction, resulted in racemic 46 and 8 and enantiomeric 4a, 4b, 5a and 5b eight-membered cyclic β-amino acid derivatives.  相似文献   

17.
《Tetrahedron: Asymmetry》2004,15(9):1465-1469
(1R,2R,3S,5R,7aR)-1,2-Dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-3-epi-hyacinthacine A3] 1 and (1R,2R,3S,7aR)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine [(+)-3-epi-hyacinthacine A2] 2 have been synthesized by Wittig's methodology using aldehyde 6, prepared from (2R,3R,4R,5S)-3,4-dibenzyloxy-N-benzyloxycarbonyl-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl) pyrrolidine 3 (a partially protected DGDP), and the appropriated ylides, followed by cyclization through an internal reductive amination process of the resulting α,β-unsaturated ketone 7 and aldehyde 8, respectively, and total deprotection.  相似文献   

18.
The rate of the thermal rearrangement of (S) 2 chloromethyl-1-ethylpyrrolidine [(S)-1a] to (R)-3-chloro-1-ethylpiperidine [(R) 2a] has been examined at three temperatures in benzene by PMR and polarimetry. The rearrangement was shown to be completely stereospecific and to obey a simple first order rate law. The calculated Ea ΔH3 and ΔS3 were 22 ± 2 kcalmole (25°), 21 ± 2.5 kcalmole (25°) and - 10 ± 2 e.u. (0°K) respectively. The effect of solvents having differing dielectric constants was also studied. A transition state 9'a and an ion pair intermediate 3a are suggested for the rearrangement. The stereochemical course of the reactions of (S)-1a, (R)-2a and (S)-2a with hydroxide and methoxide ions have been shown to be 100% stereospecific with an uncertainty of about 1%. The absolute configurations of all optically active reactants and products [(S)- and (R)-4a, (S)-4b (R)- and (S)-5a, (R)-5b, (S,S')-6a, (S,R')-7a and (R,R')-8a] were established by chemical correlations with known compounds or by ORD and chemical inference. The ring opening of both the primary and secondary aziridinium ion positions of 1-azonia-1-ethylbicyclo [3.1.0]hexane [(S)-3a] by nucleophiles proceeds entirely by SN2 processes. The conversion of (R)-1-ethyl-3-hydroxypiperidine [(R)-5a] to (S)-2a. HCl with thionyl chloride in chloroform proceeds by inversion with 4.8% racemization, whereas the thermal rearrangement of (S)-1a to (R)-2a occurs with complete retention of absolute configuration.  相似文献   

19.
Epoxides of fatty acids are hydrolyzed by epoxide hydrolases (EHs) into dihydroxy fatty acids which are of particular interest in the mammalian leukotriene pathway. In the present report, the analysis of the configuration of dihydroxy fatty acids via their respective hydroxylactones is described. In addition, the biotransformation of (±)‐erythro‐7,8‐ and ‐3,4‐dihydroxy fatty acids in the yeast Saccharomyces cerevisiae was characterized by GC/EI‐MS analysis. Biotransformation of chemically synthesized (±)‐erythro‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acid ((±)‐erythro‐ 1 ) in the yeast S. cerevisiae resulted in the formation of 5,6‐dihydroxy(5,6‐2H2)dodecanoic acid ( 6 ), which was lactonized into (5S,6R)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6R)‐ 4 ) with 86% ee and into erythro‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone (erythro‐ 8 ). Additionally, the α‐ketols 7‐hydroxy‐8‐oxo(7‐2H1)tetradecanoic acid ( 9a ) and 8‐hydroxy‐7‐oxo(8‐2H1)tetradecanoic acid ( 9b ) were detected as intermediates. Further metabolism of 6 led to 3,4‐dihydroxy(3,4‐2H2)decanoic acid ( 2 ) which was lactonized into 3‐hydroxy(3,4‐2H2)decano‐4‐lactone ( 5 ) with (3R,4S)‐ 5 =88% ee. Chemical synthesis and incubation of (±)‐erythro‐3,4‐dihydroxy(3,4‐2H2)decanoic acid ((±)‐erythro‐ 2 ) in yeast led to (3S,4R)‐ 5 with 10% ee. No decano‐4‐lactone was formed from the precursors 1 or 2 by yeast. The enantiomers (3S,4R)‐ and (3R,4S)‐3,4‐dihydroxy(3‐2H1)nonanoic acid ((3S,4R)‐ and (3R,4S)‐ 3 ) were chemically synthesized and comparably degraded by yeast without formation of nonano‐4‐lactone. The major products of the transformation of (3S,4R)‐ and (3R,4S)‐ 3 were (3S,4R)‐ and (3R,4S)‐3‐hydroxy(3‐2H1)nonano‐4‐lactones ((3S,4R)‐ and (3R,4S)‐ 7 ), respectively. The enantiomers of the hydroxylactones 4, 5 , and 7 were chemically synthesized and their GC‐elution sequence on Lipodex® E chiral phase was determined.  相似文献   

20.
Stereoselective syntheses of racemic (1S,2R,3R,4R,5S,6R)- and (1S,2R,3R,4S,5S,6R)-3,4,5,6-tetrahydroxy derivatives of 2-aminocyclohexanecarboxylic acid have been achieved by a stereospecific Diels-Alder reaction between furan and maleic anhydride, a Curtius rearrangement and hydroxylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号