首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacitated minimum spanning tree (CMST) problem is to find a minimum cost spanning tree with an additional cardinality constraint on the sizes of the subtrees incident to a given root node. The CMST problem is an NP-complete problem, and existing exact algorithms can solve only small size problems. Currently, the best available heuristic procedures for the CMST problem are tabu search algorithms due to Amberg et al. and Sharaiha et al. These algorithms use two-exchange neighborhood structures that are based on exchanging a single node or a set of nodes between two subtrees. In this paper, we generalize their neighborhood structures to allow exchanges of nodes among multiple subtrees simultaneously; we refer to such neighborhood structures as multi-exchange neighborhood structures. Our first multi-exchange neighborhood structure allows exchanges of single nodes among several subtrees. Our second multi-exchange neighborhood structure allows exchanges that involve multiple subtrees. The size of each of these neighborhood structures grows exponentially with the problem size without any substantial increase in the computational times needed to find improved neighbors. Our approach, which is based on the cyclic transfer neighborhood structure due to Thompson and Psaraftis and Thompson and Orlin transforms a profitable exchange into a negative cost subset-disjoint cycle in a graph, called an improvement graph, and identifies these cycles using variants of shortest path label-correcting algorithms. Our computational results with GRASP and tabu search algorithms based on these neighborhood structures reveal that (i) for the unit demand case our algorithms obtained the best available solutions for all benchmark instances and improved some; and (ii) for the heterogeneous demand case our algorithms improved the best available solutions for most of the benchmark instances with improvements by as much as 18%. The running times our multi-exchange neighborhood search algorithms are comparable to those taken by two-exchange neighborhood search algorithms. Received: September 1998 / Accepted: March 2001?Published online May 18, 2001  相似文献   

2.
The capacitated minimum spanning tree (CMST) problem is fundamental to the design of centralized communication networks. In this paper we consider the multi-level capacitated minimum spanning tree problem, a generalization of the well-known CMST problem. Based on work previously done in the field, three heuristics are presented, addressing unit and non-unit demand cases. The proposed heuristics have been also integrated into a mixed integer programming solver. Evaluation results are presented, for an extensive set of experiments, indicating the improvements that the heuristics bring to the particular problem.  相似文献   

3.
Genetic algorithms and other evolutionary algorithms have been successfully applied to solve constrained minimum spanning tree problems in a variety of communication network design problems. In this paper, we enlarge the application of these types of algorithms by presenting a multi-population hybrid genetic algorithm to another communication design problem. This new problem is modeled through a hop-constrained minimum spanning tree also exhibiting the characteristic of flows. All nodes, except for the root node, have a nonnegative flow requirement. In addition to the fixed charge costs, nonlinear flow dependent costs are also considered. This problem is an extension of the well know NP-hard hop-constrained Minimum Spanning Tree problem and we have termed it hop-constrained minimum cost flow spanning tree problem. The efficiency and effectiveness of the proposed method can be seen from the computational results reported.  相似文献   

4.
本文针对传统的基于边的最小支撑树逆问题,提出了一类基于点边更新策略的最小支撑树逆问题.更新一个点是指减少与此点相关联的某些边的权值.根据是否含有更新点的费用,考虑了两类模型,它们均可转化为森林上的最小(费用)点覆盖的求解问题,算法的复杂性都是O(mn),其中m=|E|n=|V|。  相似文献   

5.
We develop ideas to enhance the performance of the variable neighborhood search (VNS) by guiding the search in the shaking phase, and by employing the Skewed strategy. For this purpose, Second Order algorithms and Skewed functions expressing structural differences are embedded in an efficient VNS proposed in the literature for the degree constrained minimum spanning tree problem. Given an undirected graph with weights associated with its edges, the degree constrained minimum spanning tree problem consists in finding a minimum spanning tree of the given graph, subject to constraints on node degrees. Computational experiments are conducted on the largest and hardest benchmark instances found in the literature to date. We report results showing that the VNS with the proposed strategies improved the best known solutions for all the hardest benchmark instances. Moreover, these new best solutions significantly reduced the gaps with respect to tight lower bounds reported in the literature.  相似文献   

6.
We consider the capacitated minimum cost flow problem on directed hypergraphs. We define spanning hypertrees so generalizing the spanning tree of a standard graph, and show that, like in the standard and in the generalized minimum cost flow problems, a correspondence exists between bases and spanning hypertrees. Then, we show that, like for the network simplex algorithms for the standard and for the generalized minimum cost flow problems, most of the computations performed at each pivot operation have direct hypergraph interpretations.  相似文献   

7.
An arborescence of a multihop radio network is a directed spanning tree (with rootx) such that the edges are directed away from the root. Based upon an arborescence,x canbroadcast a message to other nodes according to the directed edges of the spanning tree. The minimum transmission power arborescence problem is to find an arborescence such that the message can be broadcasted to other nodes by using a minimal amount of transmission power. The minimum delay arborescence problem is to find an arborescence such that a message can be broadcasted to other nodes by using a minimal number of broadcast transmission. In this paper we show that both these problems areNP-complete. The reductions are from the maximum leaf spanning tree problem.Areverse arborescence is similar to an arborescence except that the edges are directed toward the root. Based upon a reverse arborescence, the root node cancollect information from other nodes. In this paper we also show that the reverse minimum transmission power arborescence problem can be solved with the same computational complexity as that of finding a minimum cost spanning tree, and the reverse minimum delay arborescence problem can be solved with the same computational complexity as that of finding a spanning tree.  相似文献   

8.
Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode these forests. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problem instances which we optimize using different evolutionary computation algorithms encoding individuals of the population using the proposed representation. To illustrate the applicability of our approach, we formulate the trans-European transport network as a DRCMST problem. In this network design, we simultaneously optimize nine transport corridors and show that it is straightforward using the proposed representation to add constraints depending on the specific characteristics of the network.  相似文献   

9.
The network loading problem (NLP) is a specialized capacitated network design problem in which prescribed point-to-point demand between various pairs of nodes of a network must be met by installing (loading) a capacitated facility. We can load any number of units of the facility on each of the arcs at a specified arc dependent cost. The problem is to determine the number of facilities to be loaded on the arcs that will satisfy the given demand at minimum cost.This paper studies two core subproblems of the NLP. The first problem, motivated by a Lagrangian relaxation approach for solving the problem, considers a multiple commodity, single arc capacitated network design problem. The second problem is a three node network; this specialized network arises in larger networks if we aggregate nodes. In both cases, we develop families of facets and completely characterize the convex hull of feasible solutions to the integer programming formulation of the problems. These results in turn strengthen the formulation of the NLP.Research of this author was supported in part by a Faculty Grant from the Katz Graduate School of Business, University of Pittsburgh.  相似文献   

10.
Typical formulations of thep-median problem on a network assume discrete nodal demands. However, for many problems, demands are better represented by continuous functions along the links, in addition to nodal demands. For such problems, optimal server locations need not occur at nodes, so that algorithms of the kind developed for the discrete demand case can not be used. In this paper we show how the 2-median of a tree network with continuous link demands can be found using an algorithm based on sequential location and allocation. We show that the algorithm will converge to a local minimum and then present a procedure for finding the global minimum solution.  相似文献   

11.
In this paper, we introduce the problem of computing a minimum edge ranking spanning tree (MERST); i.e., find a spanning tree of a given graph G whose edge ranking is minimum. Although the minimum edge ranking of a given tree can be computed in polynomial time, we show that problem MERST is NP-hard. Furthermore, we present an approximation algorithm for MERST, which realizes its worst case performance ratio where n is the number of vertices in G and Δ* is the maximum degree of a spanning tree whose maximum degree is minimum. Although the approximation algorithm is a combination of two existing algorithms for the restricted spanning tree problem and for the minimum edge ranking problem of trees, the analysis is based on novel properties of the edge ranking of trees.  相似文献   

12.
The diameter-constrained minimum spanning tree problem is an NP-hard combinatorial optimization problem that seeks a minimum cost spanning tree with a limit D imposed upon the length of any path in the tree. We begin by presenting four constructive greedy heuristics and, secondly, we present some second-order heuristics, performing some improvements on feasible solutions, hopefully leading to better objective function values. We present a heuristic with an edge exchange mechanism, another that transforms a feasible spanning tree solution into a feasible diameter-constrained spanning tree solution, and finally another with a repetitive mechanism. Computational results show that repetitive heuristics can improve considerably over the results of the greedy constructive heuristics, but using a huge amount of computation time. To obtain computational results, we use instances of the problem corresponding to complete graphs with a number of nodes between 20 and 60 and with the value of D varying between 4 and 9.  相似文献   

13.
Cost spanning tree problems concern the construction of a tree which provides a connection with the source for every node of the network. In this paper, we address cost sharing problems associated to these situations when the agents located at the nodes act in a non-cooperative way. A class of strategies is proposed which produce minimum cost spanning trees and, at the same time, are strong Nash equilibria for a non-cooperative game associated to the problem. They are also subgame perfect Nash equilibria.  相似文献   

14.
Election is a classical paradigm in distributed algorithms. This paper aims to design and analyze a distributed algorithm choosing a node in a graph which models a network. In case the graph is a tree, a simple schema of algorithm acts as follows: it removes leaves until the graph is reduced to a single vertex; the elected one. In Métivier et al. (2003) [7], the authors studied a randomized variant of this schema which gives the same probability of being elected to each node of the tree. They conjectured that the expected election duration of this algorithm is O(ln(n)) where n denotes the size of the tree, and asked whether it is possible to use the same algorithm to obtain a fair election in other classes of graphs.In this paper, we prove their conjecture. We then introduce a new structure called polyominoid graphs. We show how a spanning tree for these graphs can be computed locally so that our algorithm, applied to this spanning tree, gives a uniform election algorithm on polyominoids.  相似文献   

15.
We consider the problem of finding a fundamental cycle basis with minimum total cost in an undirected graph. This problem is NP-hard and has several interesting applications. Since fundamental cycle bases correspond to spanning trees, we propose a local search algorithm, a tabu search and variable neighborhood search in which edge swaps are iteratively applied to a current spanning tree. We also present a mixed integer programming formulation of the problem whose linear relaxation yields tighter lower bounds than other known formulations. Computational results obtained with our algorithms are compared with those from the best available constructive heuristic on several types of graphs. This article extends the conference paper (Amaldi et al. 2004).  相似文献   

16.
This paper introduces dual and primal-dual RAMP algorithms for the solution of the capacitated minimum spanning tree problem (CMST). A surrogate constraint relaxation incorporating cutting planes is proposed to explore the dual solution space. In the dual RAMP approach, primal-feasible solutions are obtained by simple tabu searches that project dual solutions onto primal feasible space. A primal-dual approach is achieved by including a scatter search procedure that further exploits the adaptive memory framework. Computational results from applying the methods to a standard set of benchmark problems disclose that the dual RAMP algorithm finds high quality solutions very efficiently and that its primal-dual enhancement is still more effective.  相似文献   

17.
Minimum Global Height支撑树及相关问题   总被引:2,自引:0,他引:2  
本文研究了两个组合优化问题:minimum g1obal height支撑树和minimum aveageheight支撑树问题.利用3SAT问题的时间复杂性,本文证明了这两个问题都是NP-hard的,并分别给出了一个算法,即(mgh)-算法和(mah)-算法.在非负网络中,这两个算法的时间复杂性都为O(n3).利用第一个问题的复杂性,本文证明了minimum height支撑树问题也是NP-hard的,从而纠正了有关文献中的一个错误结论.  相似文献   

18.
We introduce the prize-collecting generalized minimum spanning tree problem. In this problem a network of node clusters needs to be connected via a tree architecture using exactly one node per cluster. Nodes in each cluster compete by offering a payment for selection. This problem is NP-hard, and we describe several heuristic strategies, including local search and a genetic algorithm. Further, we present a simple and computationally efficient branch-and-cut algorithm. Our computational study indicates that our branch-and-cut algorithm finds optimal solutions for networks with up to 200 nodes within two hours of CPU time, while the heuristic search procedures rapidly find near-optimal solutions for all of the test instances.  相似文献   

19.
This paper develops a greedy heuristic for the capacitated minimum spanning tree problem (CMSTP), based on the two widely known methods of Prim and of Esau–Williams. The proposed algorithm intertwines two-stages: an enhanced combination of the Prim and Esau–Williams approaches via augmented and synthetic node selection criteria, and an increase of the feasible solution space by perturbing the input data using the law of cosines. Computational tests on benchmark problems show that the new heuristic provides extremely good performance results for the CMSTP, justifying its effectiveness and robustness. Furthermore, excluding the feasible space expansion, we show that we can still obtain good quality solutions in very short computational times.  相似文献   

20.
This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号