首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The reactions between Ti(O(i)Pr)(4) and Zr(2)(O(i)Pr)(8)(HO(i)Pr)(2), respectively, and lead 2-ethylhexanoate Pb(O(2)CC(7)H(15))(2) have been investigated at rt and by heating. The initial mixed-metal species, characterized by single-crystal X-Ray diffraction, were adducts namely Pb(4)Zr(4)(mu-O(2)CR')(8)(mu-OR)(6)(mu(3)-OR)(2)(OR)(8)(OHR)(2) and Pb(2)Ti(4)(mu-O(2)CR')(4)(mu-OR)(6)(mu(3)-OR)(2)(OR)(8) (R' = CHCH(Et)C(2)H(4)Me, R = (i)Pr) independently of the stoichiometry used. They are the first Pb-Ti and Pb-Zr non-oxo carboxylatoalkoxides reported. is also the first Pb-Zr species based on an alkoxide-carboxylate ligand set matching the PbZrO(3) stoichiometry. Both structures are centrosymmetric with six-coordinate transition metals, as required for the perovskite, and are based on triangular M(2)Pb cores (M = Zr, Ti). The lead centers display quite high coordination numbers, six and seven. The thermal and hydrolytic condensation reactions of and were investigated. Heat treatment of and elimination of the volatiles under vacuum afforded Pb(2)Ti(3)(mu(4)-O)(mu(3)-O)(mu-O(2)CC(7)H(15))(2)(mu-O(i)Pr)(6)(O(i)Pr)(4) resulting from extrusion of Ti(O(i)Pr)(4) and scrambling of carboxylate ligands. Characterization of the various compounds was achieved by elemental analysis, FT-IR, (1)H and (207)Pb NMR.  相似文献   

2.
In this paper a series of eight Ti(IV) piperazine based complexes have been prepared and fully characterised in the solid-state by X-ray crystallography and in solution via NMR spectroscopy. In the solid-state either Ti(2)(L)(O(i)Pr)(6) or Ti(2)(L)(2)(O(i)Pr)(4) were observed depending upon the nature of the starting ligand. For complexes with less sterically demanding ligands (1H(2) and 2H(2)) an equilibrium was observed: 2 Ti(2)(L)(O(i)Pr)(6) ? Ti(2)(L)(2)(O(i)Pr)(4) + 2 Ti(O(i)Pr)(4). The thermodynamic properties (ΔG, ΔH and ΔS) have been investigated via variable temperature NMR spectroscopy. With more sterically demanding ligands (3-8H(2)) the Ti(2)(L)(O(i)Pr)(6) form was the most prevalent in the solid-state and in solution. These complexes have been tested for the production of polylactide under melt and solution conditions with high conversions being obtained.  相似文献   

3.
This study reports three new crystalline aluminum isopropoxide oxide fluorides with molar ratios of Al:F equal to 1:1 and 1:1.25. These are the first three representatives isolated without the incorporation of external donor molecules. Compound 1 Al(4)F(4)(μ(4)-O)(μ-O(i)Pr)(5)[H(O(i)Pr)(2)] contains a tetranuclear unit consisting of two different five fold coordinated AlFO(4)-units, with F exclusively in the terminal position. Compound 2, Al(4)F(4)(μ(4)-O)(μ-O(i)Pr)(5)[H(O(i)Pr)(2)]·Al(5)F(5)(μ(5)-O)(μ-O(i)Pr)(8), contains both a tetranuclear unit (as in 1) and a pentanuclear Al-unit. Al-atoms in the latter are five- and six fold coordinated. Compound 3, Al(16)F(20)(μ(4)-O)(4)(μ-O(i)Pr)(20)·2((i)PrOH), exhibits a slightly higher fluorination degree and contains an oligomeric chain of four F-linked tetranuclear Al-units. In addition to X-ray structure analysis, compound 1 was characterized by different solid state MAS NMR techniques, including (27)Al triple quantum MAS NMR and (1)H, (1)H→(13)C CP, (19)F and (27)Al MAS NMR. On the basis of the collected data, a reliable decomposition of (27)Al single pulse MAS NMR spectra and an unambiguous assignment of the resonances to the respective structural AlFO(4)-units are given. The new crystalline aluminum isopropoxide oxide fluorides are direct evidence of the fluorolytic sol-gel mechanism previously discussed.  相似文献   

4.
The reaction of a 1:2 mixture of bismuth(III) salicylate with titanium(IV) isopropoxide in refluxing toluene has been investigated and found to proceed with ligand exchange to produce the new heterobimetallic complexes BiTi(4)(sal)(6)(mu-O(i)Pr)(3)(O(i)Pr)(4) (1), Bi(4)Ti(4)(sal)(10)(mu-O(i)Pr)(4)(O(i)Pr)(4) (2), and Bi(8)Ti(8)(sal)(20)(mu-O(i)Pr)(8)(O(i)Pr)(8) (3). Complex 1 is the major product, while 2 and 3 were identified as minor products from the reaction. Compound 1 is produced pure and in high yield by employing stoichiometric amounts of reagents; its crystal structure consists of a [Ti(4)(sal)(6)(O(i)Pr)(7)](3)(-) ion capped by a Bi(3+) ion. Complexes 2 and 3 exhibit cyclic ring structures of bismuth and titanium atoms showing crystallographically imposed inversion symmetry. Both structures occlude large quantities of lattice solvent. The compositional and structural parameters from the single crystal studies indicate that complexes 2 and 3 may represent sequential steps in a ligand exchange process between the two metal species, while the reactivity patterns that were observed provide clues about the solution state structure of bismuth(III) salicylate itself. The 2D COSY (1)H NMR spectrum of 1 indicates retention of the asymmetric structure in solution as evidenced by the presence of 14 diastereotopic isopropoxide methyl resonances.  相似文献   

5.
The octanuclear aggregates M(8)(mu(4)-O)(2)(O(2)CN(i)()Pr(2))(12) [M = Mn(II) 1, Co(II) 2, Ni(II) 3] have been prepared in good yields by controlled hydrolysis of the corresponding metal carbamate precursors [M(O(2)CN(i)()Pr(2))(2)](n)(). X-ray analysis has shown compounds 1-3 to be isostructural. The core of 2 contains two distorted [M(4)O] tetrahedra related by an inversion center. The hexanuclear carbamates M(6)(O(2)CNEt(2))(12) in toluene undergo a metal redistribution process with formation of the hexanuclear carbamates M'(x)M' '(6-x)(O(2)CNEt(2))(12), M' = Co, M' ' = Mn, as evidenced by mass-spectrometric data. In the presence of moisture, the mixed octanuclear carbamates Co(x)Mn(6-x)(MnO)(CoO)(O(2)CNEt(2))(12) were promptly formed and detected by DCI/MS measurements. Mass spectral data of Co(8)(mu(4)-O)(2)(O(2)CN(i)Pr(2))(12) are also reported.  相似文献   

6.
A novel polynuclear single-source precursor was prepared and characterized by single-crystal X-ray diffraction and multinuclear NMR spectroscopy. Nano-crystalline MgAl(2)O(4) spinel was synthesized via sol-gel processing of [MgAl(2)(μ(3)-O)(μ(2)-O(i)Pr)(4)(O(i)Pr)(2)](4). XRD, TGA-DSC and HRTEM confirmed the formation of a spinel phase at 475 °C, a temperature lower than any known processing temperature for MgAl(2)O(4).  相似文献   

7.
Zhao D  Gao B  Gao W  Luo X  Tang D  Mu Y  Ye L 《Inorganic chemistry》2011,50(1):30-36
A series of new titanium(IV) complexes with symmetric or asymmetric cis-9,10-dihydrophenanthrenediamide ligands, cis-9,10-PhenH(2)(NR)(2)Ti(O(i)Pr)(2) [PhenH(2) = 9,10-dihydrophenanthrene, R = 2,6-(i)Pr(2)C(6)H(3) (2a), 2,6-Et(2)C(6)H(3) (2b), 2,6-Me(2)C(6)H(3) (2c)], cis-9,10-PhenH(2)(NR(1))(NR(2))Ti(O(i)Pr)(2) [R(1) = 2,6-(i)Pr(2)C(6)H(3), R(2) = 2,6-Et(2)C(6)H(3) (2d); R(1) = 2,6-(i)Pr(2)C(6)H(3), R(2) = 2,6-Me(2)C(6)H(3) (2e)], and [cis-9,10-PhenH(2)(NR(1))(2)][o-C(6)H(4)(CH=NR(2))]TiO(i)Pr [R(1) = 2,6-(i)Pr(2)C(6)H(3), R(2) = 2,6-Et(2)C(6)H(3) (3a); R(1) = 2,6-(i)Pr(2)C(6)H(3), 2,6-Me(2)C(6)H(3) (3b)], have been synthesized from the reactions of TiCl(2)(O(i)Pr)(2) with o-C(6)H(4)(CH=NR)Li [R = 2,6-(i)Pr(2)C(6)H(3), 2,6-Et(2)C(6)H(3), 2,6-Me(2)C(6)H(3)]. The symmetric complexes 2a-2c were obtained from the reactions of TiCl(2)(O(i)Pr)(2) with 2 equiv of the corresponding o-C(6)H(4)(CH=NR)Li followed by intramolecular C-C bond-forming reductive elimination and oxidative coupling processes, while the asymmetric complexes 2d-2e were formed from the reaction of TiCl(2)(O(i)Pr)(2) with two different types of o-C(6)H(4)(CH=NR)Li sequentially. The complexes 3a and 3b were also isolated from the reactions for complexes 2d and 2e. All complexes were characterized by (1)H and (13)C NMR spectroscopy, and the molecular structures of 2a, 2b, 2e, and 3a were determined by X-ray crystallography.  相似文献   

8.
A series of di-, tri-, and tetra-nuclear iron-oxido clusters with bis(trimethylsilyl)amide and thiolate ligands were synthesized from the reactions of Fe{N(SiMe(3))(2)}(2) (1) with 1 equiv of thiol HSR (R = C(6)H(5) (Ph), 4-(t)BuC(6)H(4), 2,6-Ph(2)C(6)H(3) (Dpp), 2,4,6-(i)Pr(3)C(6)H(2) (Tip)) and subsequent treatment with O(2). The trinuclear clusters [{(Me(3)Si)(2)N}Fe](3)(μ(3)-O){μ-S(4-RC(6)H(4))}(3) (R = H (3a), (t)Bu (3b)) were obtained from the reactions of 1 with HSPh or HS(4-(t)BuC(6)H(4)) and O(2), while we isolated a tetranuclear cluster [{(Me(3)Si)(2)N}(2)Fe(2)(μ-SDpp)](2)(μ(3)-O)(2) (4) as crystals from an analogous reaction with HSDpp. Treatment of a tertrahydrofuran (THF) solution of 1 with HSTip and O(2) resulted in the formation of a dinuclear complex [{(Me(3)Si)(2)N}(TipS)(THF)Fe](2)(μ-O) (5). The molecular structures of these complexes have been determined by X-ray crystallographic analysis.  相似文献   

9.
The reaction of [Ti(NR)Cl(2)(py)(3)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) with [{Li(bdmpza)(H(2)O)}(4)][bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and [{Li(bdmpzdta)(H(2)O)}(4)][bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] affords the corresponding complexes [Ti(NR)Cl(kappa(3)-bdmpzx)(py)](x = a, R = (t)Bu 1, p-tolyl 2, 2,6-C(6)H(3)(i)Pr(2) 3; x = dta, R =(t)Bu 4, p-tolyl , 2,6-C(6)H(3)(i)Pr(2) 6), which are the first examples of imido Group 4 complexes stabilized by heteroscorpionate ligands. The solid-state X-ray crystal structure of 1 has been determined. The titanium centre is six-coordinate with three fac-sites occupied by the heteroscorpionate ligand and the remainder of the coordination sphere being completed by chloride, imido and pyridine ligands. The complexes are 1-6 fluxional at room temperature. The pyridine ortho- and meta-proton resonances show evidence of dynamic behaviour for this ligand and variable-temperature NMR studies were carried out in order to study their dynamic behaviour in solution. The complexes [Nb(NR)Cl(3)(py)(2)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) reacted with [{Li(bdmpza)(H(2)O)}(4)] and (Hbdmpze)[bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide], the latter with prior addition of (n)BuLi, to give the complexes [Nb(NR)Cl(2)(kappa(3)-bdmpzx)](x = a, R =(t)Bu 7, p-tolyl 8, 2,6-C(6)H(3)(i)Pr(2) 9; x = e, R = (t)Bu 10, p-tolyl 11, 2,6-C(6)H(3)(i)Pr(2)) 12 and these are the first examples of imido Group 5 complexes with heteroscorpionate ligands. The structures of these complexes have been determined by spectroscopic methods.  相似文献   

10.
Dinuclear Ti(IV), Zr(IV), and Ce(IV) oxo and peroxo complexes containing the imidodiphosphinate ligand [N(i-Pr(2)PO)(2)](-) have been synthesized and structurally characterized. Treatment of Ti(O-i-Pr)(2)Cl(2) with KN(i-Pr(2)PO)(2) afforded the Ti(IV) di-μ-oxo complex [Ti{N(i-Pr(2)PO)(2)}(2)](2)(μ-O)(2) (1) that reacted with 35% H(2)O(2) to give the peroxo complex Ti[N(i-Pr(2)PO)(2)](2)(η(2)-O(2)) (2). Treatment of HN(i-Pr(2)PO)(2) with Zr(O-t-Bu)(4) and Ce(2)(O-i-Pr)(8)(i-PrOH)(2) afforded the di-μ-peroxo-bridged dimers [M{N(i-Pr(2)PO)(2)}(2)](2)(μ-O(2))(2) [M = Zr (3), Ce (4)]. 4 was also obtained from the reaction of Ce[N(i-Pr(2)PO)(2)](3) with 35% H(2)O(2). Treatment of (Et(4)N)(2)[CeCl(6)] with 3 equiv of KN(i-Pr(2)PO)(2) afforded Ce[N(i-Pr(2)PO)(2)](3)Cl (5). Reaction of (Et(4)N)(2)[CeCl(6)] with 2 equiv of KN(i-Pr(2)PO)(2) in acetonitrile, followed by treatment with Ag(2)O, afforded the μ-oxo-bridged complex [Ce{N(i-Pr(2)PO)(2)}Cl](2)[μ-N(i-Pr(2)PO)(2)](2)(μ-O) (6). 6 undergoes ligand redistribution in CH(2)Cl(2) in air to give 5. The solid-state structures of [K(2){N(i-Pr(2)PO)(2)}(2)(H(2)O)(8)](n) and complexes 1-6 have been determined.  相似文献   

11.
The reaction of (E)-1-(phenylseleno)-2-(trimethylsilyl)ethene (1) and vinyl ketones 2a-d in the presence of a chiral Lewis acid prepared from TiCl(4), Ti(O(i)Pr)(4), (R)- or (S)-1,1'-binaphthol (BINOL), and MS4A gave enantiomerically enriched cis cyclopropane products 3a-d. The enantiomeric excess and chemical yield varied depending on the ratio of TiCl(4) and Ti(O(i)Pr)(4) to 1. Reproducible results (43-47% ee/33-41% yields) for cis-1-acetyl-2-[(phenylseleno)(trimethylsilyl)methyl]cyclopropane (3a) were obtained using 1.1 equiv of TiCl(4), 0.54-0.65 equiv of Ti(O(i)Pr)(4), and 1.65 equiv of BINOL. The observed enantioselectivity was explained by consideration of the structure of the postulated intermediates, alkoxy titanium-carbonyl complexes, via ab initio MO calculations.  相似文献   

12.
Amide and lithium aryloxide gallates [Li(+){RGaPh(3)}(-)] (R = NMe(2), O-2,6-Me(2)C(6)H(3)) react with the μ(3)-alkylidyne oxoderivative ligand [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] (1) to afford the gallium-lithium-titanium cubane complexes [{Ph(3)Ga(μ-R)Li}{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] [R = NMe(2) (3), O-2,6-Me(2)C(6)H(3) (4)]. The same complexes can be obtained by treatment of the [Ph(3)Ga(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CH)] (2) adduct with the corresponding lithium amide or aryloxide, respectively. Complex 3 evolves with formation of 5 as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)](+) together with the anionic [(GaPh(3))(2)(μ-NMe(2))](-) unit. On the other hand, the reaction of 1 with Li(p-MeC(6)H(4)) and GaPh(3) leads to the complex [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][GaLi(p-MeC(6)H(4))(2)Ph(3)] (6). X-ray diffraction studies were performed on 1, 2, 4, and 5, while trials to obtain crystals of 6 led to characterization of [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][PhLi(μ-C(6)H(5))(2)Ga(p-MeC(6)H(4))Ph] 6a.  相似文献   

13.
The reactions between triphenylbismuth, salicylic acid, and the metal alkoxides M(OCH(2)CH(3))(5) (M = Nb, Ta) or Ti[OCH(CH(3))(2)](4) have been investigated under different reaction conditions and in different stoichiometries. Six novel heterobimetallic bismuth alkoxy-carboxylate complexes have been synthesized in good yield as crystalline solids. These include Bi(2)M(2)(sal)(4)(Hsal)(4)(OR)(4) (M = Nb, Ta; R = CH(2)CH(3), CH(CH(3))(2)), Bi(2)Ti(3)(sal)(8)(Hsal)(2), and Bi(2)Ti(4)(O(i)Pr)(sal)(10)(Hsal) (sal = O(2)CC(6)H(4)-2-O; Hsal = O(2)CC(6)H(4)-2-OH). The complexes have been characterized spectroscopically and by single-crystal X-ray diffraction. Compounds of the group V transition metals contain metal ratios appropriate for precursors of ferroelectric materials. The molecules exhibit excellent solubility in common organic solvents and good stability against unwanted hydrolysis. The nature of the thermal decomposition of the complexes has been explored by thermogravimetric analysis and powder X-ray diffraction. We have shown that the complexes are converted to the corresponding oxide by heating in an oxygen atmosphere at 500 degrees C. The mass loss of the complexes, as indicated by thermogravimetric analysis, and the resulting unit cell parameters of the oxides are consistent with the formation of the desired heterobimetallic oxide. The complexes decomposed to form the bismuth-rich phases Bi(4)Ti(3)O(12) and Bi(5)Nb(3)O(15) as well as the expected oxides BiMO(4) (M = Nb, Ta) and Bi(2)Ti(4)O(11).  相似文献   

14.
Ammonolysis of the μ(3)-alkylidyne derivatives [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] produces a trinuclear oxonitride species, [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-N)] (3), via methane or ethane elimination, respectively. During the course of the reaction, the intermediates amido μ-alkylidene [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ-CHR)(NH(2))] [(R = H (4), Me (5)] and μ-imido ethyl species [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ-NH)Et] (6) were characterized and/or isolated. This achievement constitutes an example of characterization of the three steps of successive activation of N-H bonds in ammonia within the same transition-metal molecular system. The N-H σ-bond activation of ammonia by the μ(3)-alkylidyne titanium species has been theoretically investigated by DFT method on [{Ti(η(5)-C(5)H(5))(μ-O)}(3)(μ(3)-CH)] model complex. The calculations complement the characterization of the intermediates, showing the multiple bond character of the terminal amido and the bridging nature of imido ligand. They also indicate that the sequential ammonia N-H bonds activation process goes successively downhill in energy and occurs via direct hydron transfer to the alkylidyne group on organometallic oxides 1 and 2. The mechanism can be divided into three stages: (i) coordination of ammonia to a titanium center, in a trans disposition with respect to the alkylidyne group, and then the isomerization to adopt the cis arrangement, allowing the direct hydron migration to the μ(3)-alkylidyne group to yield the amido μ-alkylidene complexes 4 and 5, (ii) hydron migration from the amido moiety to the alkylidene group, and finally (iii) hydron migration from the μ-imido complex to the alkyl group to afford the oxo μ(3)-nitrido titanium complex 3 with alkane elimination.  相似文献   

15.
Two alkane dicarboxylates substituted titanium-oxo-clusters, Ti6O3(OOCCH2COO)2(O i Pr)14 (1) and Ti6O3(OOCC2H4COO)2(O i Pr)14 (2), were successfully prepared by one step in situ solvothermal synthesis. The compounds are the first examples of only flexible alkane dicarboxylate-substituted titanium-oxo-clusters. The structures of the compounds are best described as two trinuclear oxo-Ti3 subunits linked by a μ 2-O bridge and two malonate or succinate ligands, forming Ti6 clusters. A photochromic effect was observed upon irradiating the crystals, and the color of the crystals was changed from transparent to gray. Photodegradation of the methyl orange in aqueous dispersions of microcrystals of compounds 1 and 2 were carried out under UV cut white light with the assistance of H2O2. Compound 2 exhibited higher photocatalytic activity than 1, which might be related to the smaller angles of μ 2-O bridge in 2.  相似文献   

16.
Zhang H  Duan L  Lan Y  Wang E  Hu C 《Inorganic chemistry》2003,42(24):8053-8058
Three new compounds [Ln(NMP)(4)(H(2)O)(4)][H(x)()GeMo(12)O(40)].2NMP.3H(2)O (Ln = Ce(IV) (1), Pr(IV) (2), x = 0; Ln = Nd(III) (3), x = 1; NMP = N-methyl-2-pyrrolidone) have been prepared in aqueous solution and characterized by elemental analyses, IR, UV-vis, and TG analyses. The single crystal X-ray diffraction shows that all three compounds are isostructural. In their structures, an interesting two-dimensional supramolecular network is constructed by the [GeMo(12)O(40)](4)(-) anion and [Ln(NMP)(4)(H(2)O)(4)](3+/4+) cation building blocks via hydrogen-bonding interactions, exhibiting the porous structure. Upon irradiation with UV light, the crystals of 1-3 show photochromic behavior.  相似文献   

17.
The tungsten aminoalkoxides W(O)(OPr(i))(3)L [L = dmae, OCH(2)CH(2)NMe(2) (1); bdmap, OCH(CH(2)NMe(2))(2) (2); tdmap, OC(CH(2)NMe(2))(3) (3)] have been synthesised. Controlled hydrolysis of 1-3 has allowed isolation of W(4)O(4)(μ-O)(6)(dmae)(4) (4), W(4)O(4)(μ-O)(4)(OPr(i))(4)(bdmap)(4) (5), W(6)O(6)(μ-O)(9)(tdmap)(6) (6), W(4)O(4)(μ-O)(6)(tdmap)(4) (7), W(4)O(4)(μ-O)(6)(tdmap)(4)·4H(2)O (7a), all of which have been characterised by X-ray crystallography. 4, 7, 7a each embody a W(4)O(6) core with adamantane structure, 5 incorporates a folded W(4)O(4) square and 6 has a trigonal prismatic W(6)O(9) at its heart. 7 decomposes in air at to give orthorhombic WO(3), while 1-3 decomposed under an autogenerated pressure (Reaction under Autogenic Pressure at Elevated Temperatures, RAPET) to form mixtures of carbon-coated WO(x) needles and carbon spherules.  相似文献   

18.
Bulky 2,6-disubstituted aryl esters of phosphoric acid, 2,6-dimethylphenyl phosphate (dmppH 2), and 2,6-diisopropylphenyl phosphate (dippH 2) react differently with Cp*TiCl 3 (Cp* = C 5Me 5) under identical reaction conditions. While dippH 2 and Cp*TiCl 3 react in THF at 25 degrees C to yield air-stable trinuclear titanophosphate cage [(Ti 3Cp*Cl(mu 2 -O)(dipp) 2(dippH) 4(THF)].(toluene) ( 1), the similar reaction involving dmppH 2 yields the tetranuclear titanophosphate [Ti 4Cl 2(mu 2 -O) 2(dmpp) 2(dmppH) 6(THF) 2].(toluene) 2 ( 2). Interestingly, the change of titanium source to Ti(O iPr) 4 in the reaction with dippH 2 produces a pentanuclear titanophosphate, [Ti 5(mu 3-O)(O iPr) 6((dipp) 6(THF)] ( 3). Compounds 1- 3 were the only products isolated as single crystals from the respective reaction mixtures in 59, 75, and 54% yield, respectively. The new clusters 1- 3 have been characterized by elemental analysis, IR and NMR ( (1)H and (31)P) spectroscopy, and single crystal X-ray diffraction studies. The structural elucidation reveals that in the reactions leading to 1 and 2, extensive Cp*-Ti bond cleavage occurs, leaving only one residual Cp*-ligand in cluster 1 and none in 2. Closer analysis of the structures of 1- 3 shows common structural features which in turn imply that the formation of all three products could have proceeded via a common Ti-O-Ti dimeric building block.  相似文献   

19.
The tetra-n-butylammonium (TBA) salts of [((i)PrO)TiMo(5)O(18)](3-) 1 and [((i)BuO)TiMo(5)O(18)](3-) 2 were prepared by hydrolysis of mixtures of (TBA)(2)[Mo(2)O(7)], (TBA)(4)α-[Mo(8)O(26)] and Ti(OR)(4) (R = (i)Pr or (i)Bu) in acetonitrile. Treatment of (TBA)(3)1 with alcohols ROH afforded primary and tertiary alkoxide derivatives [(RO)TiMo(5)O(18)](3-) (R = Me 3, (t)Bu 4), whilst aryloxides [(ArO)TiMo(5)O(18)](3-) were prepared by reacting 1 with phenols ArOH (Ar = C(6)H(4)Me-4 5, and C(6)H(4)CHO-2 6). Oxo-bridged [(μ-O)(TiMo(5)O(18))(2)](6-)7 rather than the hydroxo derivative [(HO)TiMo(5)O(18)](3-) was obtained upon hydrolysis of 1. X-Ray crystal structures of TBA salts of anions 3-7 show that titanium is six-coordinate in all cases, although titanium sites are disordered over two trans positions in 3. Mo-O bond length alternation is observed in the Mo(4)O(4) planes of 4 and 7 and in one of the two independent anions in the structure of 3. In solution, (17)O NMR spectra are consistent with the higher anionic charge compared to [Mo(6)O(19)](2-) and reveal an order of basicity for the anions [LM'Mo(5)O(18)](3-) associated with the ability of {LM'}(3+) to donate/withdraw electron density from {Mo(5)O(18)}(6-). Protonolysis reactions of 1 and 3 were slower than for tungstate analogues and the possibility of initial protonation at TiOM (M = Mo) rather than TiOR (M = W) in a proton-assisted S(N)1 mechanism for ligand exchange in [(RO)TiM(5)O(18)](3-) is discussed.  相似文献   

20.
Four Th(IV) hydroxide/oxide clusters have been synthesized from aqueous solution. The structures of [Th(8)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(15)(SeO(4))(8)·7.5H(2)O] (1), [Th(8)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(17)(SeO(4))(8)·nH(2)O] (2), [Th(9)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(21)(SeO(4))(10)] (3), and Th(9)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(21)(SeO(4))(10)·nH(2)O (4) were determined using single crystal X-ray diffraction. Each structure consists of an octanuclear core, [Th(8)O(4)(OH)(8)](16+), that is built from eight Th(IV) atoms (four Th in a plane and two up and two down) linked by four "inner" μ(3)-O and eight "outer" μ(2)-OH groups. Compounds 3 and 4 additionally contain mononuclear [Th(H(2)O)(5)(SeO(4))(4)](4-) units that link the octamers into an extended structure. The octanuclear units are invariably complexed by two selenate anions that sit in two cavities formed by four planar Th(IV) and four extra-planar Th(IV) atoms, thus making [Th(8)O(4)(OH)(8)(SeO(4))(2)](12+) a common building block in 1-4. However, changes in hydration as well selenate coordination give rise to structural differences that are observed in the extended structures of 1-4. The compounds were also characterized by Raman spectroscopy. Density functional theory calculations were performed to predict the geometries, vibrational frequencies, and relative energies of different structures. Details of the calculated structures are in good agreement with experimental results, and the calculated frequencies were used to assign the experimental Raman spectra. On the basis of an analysis of the DFT results, the compound Th(8)O(8)(OH)(4)(SeO(4))(6) was predicted to be a strong gas phase acid but is reduced to a weak acid in aqueous solution. Of the species studied computationally, the dication Th(8)O(6)(OH)(6)(SeO(6))(6)(2+) is predicted to be the most stable in aqueous solution at 298 K followed by the monocation Th(8)O(7)(OH)(5)(SeO(6))(6)(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号