首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cheng S  Wu Z 《Lab on a chip》2012,12(16):2782-2791
Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.  相似文献   

2.
The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised.  相似文献   

3.
This article is a brief overview of the emerging microfluidic systems called surface‐tension‐confined microfluidic (STCM) devices. STCM devices utilize surface energy that can control the movement of fluid droplets. Unlike conventional poly(dimethylsiloxane)‐based microfluidics which confine the movement of fluids by three‐dimensional (3D) microchannels, STCM systems provide two‐dimensional (2D) platforms for microfluidics. A variety of STCM devices have been prepared by various micro‐/nanofabrication strategies. Advantages of STCM devices over conventional microfluidics are significant reduction of energy consumption during device operation, facile introduction of fluids onto 2D microchannels without the use of a micropump, increased flow rate in a special type of STCM device, among others. Thus, STCM devices can be excellent alternatives for certain areas in microfluidics. In this Minireview, fabrication methods, operating modes, and applications of STCM devices are introduced.  相似文献   

4.
5.
Droplet microfluidics for the study of artificial cells   总被引:1,自引:0,他引:1  
In this review, we describe recent advances in droplet-based microfluidics technology that can be applied in studies of artificial cells. Artificial cells are simplified models of living cells and provide valuable model platforms designed to reveal the functions of biological systems. The study of artificial cells is promoted by microfluidics technologies, which provide control over tiny volumes of solutions during quantitative chemical experiments and other manipulations. Here, we focus on current and future trends in droplet microfluidics and their applications in studies of artificial cells.  相似文献   

6.
The development of nanometer-scale lithographies is the focus of an intense research activity because progress on nanotechnology depends on the capability to fabricate, position and interconnect nanometer-scale structures. The unique imaging and manipulation properties of atomic force microscopes have prompted the emergence of several scanning probe-based nanolithographies. In this tutorial review we present the most promising probe-based nanolithographies that are based on the spatial confinement of a chemical reaction within a nanometer-size region of the sample surface. The potential of local chemical nanolithography in nanometer-scale science and technology is illustrated by describing a range of applications such as the fabrication of conjugated molecular wires, optical microlenses, complex quantum devices or tailored chemical surfaces for controlling biorecognition processes.  相似文献   

7.
The development of scanning force microscopes that maintain precise control of the tip position using displacement control (DC-SFM) has allowed significant progress in understanding the relationships between the chemical and mechanical properties of soft interfaces. Here, developments in DC-SFM techniques and their applications are reviewed. Examples of material systems that have been investigated are discussed and compared to measurements with other techniques involving nanoprobe geometries to illustrate the achievements and promise in this area. Specifically discussed are applications to soft interfaces, including SAMs, lipid bilayers, confined fluids, polymer surfaces, ligand–receptor bonds, and soft metallic films.  相似文献   

8.
The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite‐element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.  相似文献   

9.
The demand for quick, accurate, and affordable point-of-care (POC) devices increases with the advancement in the dimensions of nanotechnology and digital interfaces (Internet of Things). The future of diagnostic requires the platform which can provide us the following benefits i. e., on-site detection, qualitative as well as quantitative analysis, easy to use, portable, low sample requirement, cost-effective, and have multiplexing proficiency. Multiplex biosensing platforms (MBPs) have the above following advantages so are going to be mostly used in various healthcare applications in near future. MBPs have the potential to fulfill the ‘ASSURED’ criteria specified by the World Health Organization (WHO) for remote-limited settings. This review paper focuses on miniaturized platforms that have multiplexing benefits for the bioanalysis of different clinical samples related to various healthcare applications. In addition to this, screening of pesticides, antibiotics, and hazardous metal ions with these surface-engineered devices has also been accounted in food and environmental samples. Some of the advanced techniques including microfluidics (Lab-on-a-chip), wearable smart devices, and CRISPR/Cas system for multiplexing applications are briefly described here. Furthermore, various needs, challenges, and prospects in commercializing these multiplexed surface-engineered devices have been discussed in this review.  相似文献   

10.
We report the first fabrication of a solvent-compatible microfluidic device based on photocurable "Liquid Teflon" materials. The materials are highly fluorinated functionalized perfluoropolyethers (PFPEs) that have liquidlike viscosities that can be cured into tough, highly durable elastomers that exhibit the remarkable chemical resistance of fluoropolymers such as Teflon. Poly(dimethylsiloxane) (PDMS) elastomers have rapidly become the material of choice for many recent microfluidic device applications. Despite the advantages of PDMS in relation to microfluidics technology, the material suffers from a serious drawback in that it swells in most organic solvents. The swelling of PDMS-based devices in organic solvents greatly disrupts the micrometer-sized features and makes it impossible for fluids to flow inside the channels. Our approach to this problem has been to replace PDMS with photocurable perfluoropolyethers. Device fabrication and valve actuation were accomplished using established procedures for PDMS devices. The additional advantage of photocuring allows fabrication time to be decreased from several hours to a matter of minutes. The PFPE-based device exhibited mechanical properties similar to those of Sylgard 184 before and after curing as well as remarkable resistance to organic solvents. This work has the potential to expand the field of microfluidics to many novel applications.  相似文献   

11.
The layer-by-layer (LbL) adsorption technique offers an easy and inexpensive process for multilayer formation and allows a variety of materials to be incorporated within the film structures. Therefore, the LbL assembly method can be regarded as a versatile bottom-up nanofabrication technique. Research fields concerned with LbL assembly have developed rapidly but some important physicochemical aspects remain uninvestigated. In this review, we will introduce several examples from physicochemical investigations regarding the basics of this method to advanced research aimed at practical applications. These are selected mostly from recent reports and should stimulate many physical chemists and chemical physicists in the further development of LbL assembly. In order to further understand the mechanism of the LbL assembly process, theoretical work, including thermodynamics calculations, has been conducted. Additionally, the use of molecular dynamics simulation has been proposed. Recently, many kinds of physicochemical molecular interactions, including hydrogen bonding, charge transfer interactions, and stereo-complex formation, have been used. The combination of the LbL method with other fabrication techniques such as spin-coating, spraying, and photolithography has also been extensively researched. These improvements have enabled preparation of LbL films composed of various materials contained in well-designed nanostructures. The resulting structures can be used to investigate basic physicochemical phenomena where relative distances between interacting groups is of great importance. Similarly, LbL structures prepared by such advanced techniques are used widely for development of functional systems for physical applications from photovoltaic devices and field effect transistors to biochemical applications including nano-sized reactors and drug delivery systems.  相似文献   

12.
In recent years, researchers are paying the increasing attention to the development of portable microfluidic diagnostic devices including microfluidic flow cytometry for the point‐of‐care testing. Microfluidic flow cytometry, where microfluidics and flow cytometry work together to realize novel functionalities on the microchip, provides a powerful tool for measuring the multiple characteristics of biological samples. The development of a portable, low‐cost, and compact flow cytometer can benefit the health care in underserved areas such as Africa or Asia. In this article, we review recent advancements of microfluidics including sample pumping, focusing and sorting, novel detection approaches, and data analysis in the field of flow cytometry. The challenge of microfluidic flow cytometry is also examined briefly.  相似文献   

13.
Microfabricated devices are poised to offer inexpensive self-contained alternatives to conventional benchtop-scale laboratory equipment for performing a variety of important DNA analysis assays. In order to realize the dramatic cost savings possible through photolithographic fabrication techniques, these devices must occupy an extremely compact footprint on the silicon wafer. This requirement implies that electrophoretic separations must be performed over ultrashort distances. Employing cross-linked polyacrylamide gels in place of conventional uncross-linked sieving media offers a convenient strategy to achieve this goal. In this paper, we show how the increased resolving power offered by cross-linked polyacrylamide gels, along with improved sample injection techniques, can be exploited to enhance separation performance in microscale systems. We use these techniques to perform high-resolution gel electrophoresis of single-stranded DNA fragments in microfabricated devices over separation distances of 1.5 cm or less. The results presented here are in agreement with theoretical predictions and suggest that it is possible to perform DNA sequencing on compact microchips. More importantly, the separation performance demonstrated in this work is already more than adequate to perform a number of important genomic assays imposing less stringent resolution requirements than sequencing. Successfully adapting even a few of these assays to the microdevice format has the potential to provide a new generation of inexpensive and portable devices suitable for direct end-user applications.  相似文献   

14.
Sacrificial layer microfluidic device fabrication methods   总被引:2,自引:0,他引:2  
Over the past 15 years, research in the field of microfluidics has experienced rapid growth due to significant potential advantages such as low cost, short analysis times, and elimination of sources of contamination. Although etched and thermally bonded glass substrates have seen widespread use and offer solid performance, device fabrication still remains cumbersome. Recent advances in sacrificial layer microfabrication methods for microfluidics have overcome many disadvantages of conventional fabrication approaches. Phase-changing sacrificial layers have been implemented in making inexpensive and high-performance polymer microchips for electrophoretic analysis, protein focusing, and sample preconcentration. In addition, novel channel fabrication methods based on standard thin-film processes, which are readily integratable with microfabrication techniques used for electrical components, are being applied increasingly for the creation of microfluidic devices. These new sacrificial layer fabrication approaches will be instrumental in making low-cost and high-quality polymer microchips, and in interfacing electrical and fluidic systems on glass or semiconductor substrates.  相似文献   

15.
Oh KW  Lee K  Ahn B  Furlani EP 《Lab on a chip》2012,12(3):515-545
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.  相似文献   

16.
There is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. Recent advances in micro- and nanoscience and engineering, in particular in the areas of particles and microfluidic technologies, have advanced the “lab-on-a-chip” concept towards the development of a new generation of point-of-care diagnostic devices that could significantly enhance test sensitivity and speed. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics. Although the potential diagnostic applications are virtually unlimited, the most important applications are foreseen in the areas of biomarker research, cancer diagnosis, and detection of infectious microorganisms.
Figure
There is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics such as microfluidic device to monitor molecular secretions in real-time as demonstrated in this figure.  相似文献   

17.
Magnetic actuated microdevices can be used to achieve several complex functions in microfluidics and microfabricated devices. For example, magnetic mixers and magnetic actuators have been proposed to help handling fluids at a small scale. Here, we present a strategy to create magnetically actuated micropillar arrays. We combined microfabrication techniques and the dispersion of magnetic aggregates embedded inside polymeric matrices to design micrometre scale magnetic features. By creating a magnetic field gradient in the vicinity of the substrate, well-defined forces were applied on these magnetic aggregates which in turn induced a deflection of the micropillars. By dispersing either spherical aggregates or magnetic nanowires into the gels, we can induce synchronized motions of a group of pillars or the movement of isolated pillars under a magnetic field gradient. When combined with microfabrication processes, this versatile tool leads to local as well as global substrate actuations within a range of dimensions that are relevant for microfluidics and biological applications.  相似文献   

18.
Since its introduction in the nineties, the negative resist SU-8 has been increasingly used in micro- and nanotechnologies. SU-8 has made the fabrication of high-aspect ratio structures accessible to labs with no high-end facilities such as X-ray lithography systems or deep reactive ion etching systems. These low-cost techniques have been applied not only in the fabrication of metallic parts or molds, but also in numerous other micromachining processes. Its ease of use has made SU-8 to be used in many applications, even when high-aspect ratios are not required. Beyond these pattern transfer applications, SU-8 has been used directly as a structural material for microelectromechanical systems and microfluidics due to its properties such as its excellent chemical resistance or the low Young modulus. In contrast to conventional resists, which are used temporally, SU-8 has been used as a permanent building material to fabricate microcomponents such as cantilevers, membranes, and microchannels. SU-8-based techniques have led to new low-temperature processes suitable for the fabrication of a wide range of objects, from the single component to the complete lab-on-chip. First, this article aims to review the different techniques and provides guidelines to the use of SU-8 as a structural material. Second, practical examples from our respective labs are presented.  相似文献   

19.
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.  相似文献   

20.
Recent developments in DNA nanotechnology have brought various nanoscale structures,devices and functional systems for different applications.As biological barriers with significant functions,cell membranes proide direct interfaces for studying cellular environment and states.So far,DNA nanotechnology engineered on live cell membranes has advanced our fundamental understandings of DNA nanomaterials and facilitated the designs of novel sensing,imaging and therapeutic platforms.In this review,we highlighted strategies and outcomes of using DNA nanotechnology on cell membranes towards various biomedical applications,including biosensing,imaging,cellular function regulations and targeted cancer therapy.Furthermore,we also discussed the challenges and opportunities of DNA nanotechnology on cell membranes towards broader applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号