首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Antiplane periodic contact problems for an elastic layer with a shear modulus which variesexponentially along its thickness are considered. The problems are reduced to an integral equation of the first kind with an irregular, periodic, difference kernel. A method which has been described previously [1,2] is used for the approximate solution of this equation.  相似文献   

2.
3.
An approximate analytical method allowing one to efficiently solve, to a preassigned accuracy, contact problems for materials with properties arbitrarily varying in depth is developed. Its possibilities are illustrated with the example of torsion of an elastic half-space, having a coating inhomogeneous across its thickness, by a circular stamp. All the results obtained are rigorously substantiated. For the approximate solutions constructed, their error is analyzed. The asymptotic properties of the solutions are investigated. The cases of a nonmonotonic change in the elastic properties are considered. In particular, the analytical solutions are examined in the case where the variation gradient of the elastic properties changes its sign many times. The results derived allow one to solve the inverse problems of elasticity theory of inhomogeneous media (e.g., the problem on controlling the variation in the elastic properties of a covering across its thickness).  相似文献   

4.
The steady mixed problem of the motion of a transversely isotropic elastic circular cylinder, compressed by a finite elastic shell, is solved by the method of piecewise-homogeneous solutions [1]. One of the relations of generalized orthogonality obtained for homogeneous solutions is used. Two special cases are considered: (1) a semi-infinite shell is placed on a movable cylinder with a specified negative allowance the edge of the shell is stress-free, and there is no preloading, and (2) a concentrated encircling load acts on the shell. The solution of the problem of a semi-infinite shell and the system of piecewise-homogeneous solutions are constructed in quadratures by the Wiener-Hopf method. (A similar problem was investigated in [2] in a static formulation. Steady mixed contact problems were investigated previously in [3–10]).  相似文献   

5.
The Ritz variational method is applied to problems of a crack (a cut) in the middle half-plane of a three-dimensional elastic wedge. The faces of the elastic wedge are either stress-free (Problem A) or are under conditions of sliding or rigid clamping (Problems B and C respectively). The crack is open and is under a specified normal load. Each of the problems reduces to an operator integrodifferential equation in relation to the jump in normal displacement in the crack area. The method selected makes it possible to calculate the stress intensity factor at a relatively small distance from the edge of the wedge to the cut area. Numerical and asymptotic solutions [Pozharskii DA. An elliptical crack in an elastic three-dimensional wedge. Izv. Ross Akad. Nauk. MTT 1993;(6):105–12] for an elliptical crack are compared. In the second part of the paper the case of a cut reaching the edge of the wedge at one point is considered. This models a V-shaped crack whose apex has reached the edge of the wedge, giving a new singular point in the solution of boundary-value problems for equations of elastic equilibrium. The asymptotic form of the normal displacements and stress in the vicinity of the crack tip is investigated. Here, the method employed in [Babeshko VA, Glushkov YeV, Zinchenko ZhF. The dynamics of Inhomogeneous Linearly Elastic Media. Moscow: Nauka; 1989] and [Glushkov YeV, Glushkova NV. Singularities of the elastic stress field in the vicinity of the tip of a V-shaped three-dimensional crack. Izv. Ross Akad. Nauk. MTT 1992;(4):82–6] to find the operator spectrum is refined. The new basis function system selected enables the elements of an infinite-dimensional matrix to be expressed as converging series. The asymptotic form of the normal stress outside a V-shaped cut, which is identical with the asymptotic form of the contact pressure in the contact problem for an elastic wedge of half the aperture angle, is determined, when the contact area supplements the cut area up to the face of the wedge.  相似文献   

6.
Asymptotic dependences of the deformation on the contact stresses are derived for a strip of variable width bound to an elastic half-plane. Similar relations were previously obtained in [1] for a strip of constant width.  相似文献   

7.
Analytical methods for solving problems of the interaction of punches with two-layer bases are described using in the example of the axisymmetric contact problem of the theory of elasticity of the interaction of an absolutely rigid sphere (a punch) with the inner surface of a two-layer spherical base. It is assumed that the outer surface of the spherical base is fixed, that the layers have different elastic constants and are rigidly joined to one anther, and that there are no friction forces in the contact area. Several properties of the integral equation of this problem are investigated, and schemes for solving them using the asymptotic method and the direct collocation method are devised. The asymptotic method can be used to investigate the problem for relatively small layer thicknesses, and the proposed algorithm for solving the problem by the collocation method is applicable for practically any values of the initial parameters. A calculation of the contact stress distribution, the parameters of the contact area, and the relation between the displacement of the punch and the force acting on it is given. The results obtained by these methods are compared, and a comparison with results obtained using Hertz, method is made for the case in which the relative thickness of the layers is large.  相似文献   

8.
The method of orthogonal polynomials, and its generalization, the method of orthogonal functions /1,2/ applied for the investigation of complex mixed problems of the mechanics of continuous media, are based on the utilization of spectral relationships that invert the main (singular) part of the kernel of the integral equation of the problem under consideration. A sufficiently general approach to the derivation of spectral relationships that is based on potential theory is proposed. Eigenfunctions are obtained in the problem of impressing a strip stamp in an elastic halfspace as are also the odd eigenfunctions of a logarithmic series in the case of two symmetric intervals. An an application of the results obtained, the solution is constructed for any value of a certain dimensionless parameter, for the plane contact problem of the impression of a rigid stamp into the surface of an elastic strip which is under an interlayer of the type of a covering resting on an undeformable foundation.  相似文献   

9.
We consider an elastic model for a shell incorporating shear, membrane, bending and dynamic effects. We make use of the theory proposed by Arnold and Brezzi [1] based on a locking free non-standard mixed variational formulation. This method is implemented in terms of the displacement and rotation variables as the minimization of an altered energy functional. We extend this theory to the shell vibrations problem and establish optimal error estimates independent of the thickness, thereby proving that shear and membrane locking is avoided. We study the numerical stability both in static and dynamic regimes. The approximation schemes are tested on specific examples and the numerical results confirm the estimates obtained from theory.  相似文献   

10.
There is examined the problem of vibration of a stamp of arbitrary planform occupying a space Ω and vibrating harmonically in an elastic medium with plane boundaries. It is assumed that the elastic medium is a packet of layers with parallel boundaries, at rest in the stiff or elastic half-space. Contact of three kinds is realized under the stamp: rigid adhesion in the domain Ω1, friction-free contact in domain Ω2, there are no tangential contact stresses, and “film” contact without normal force in domain Ω3 (there are no normal contact stresses, only tangential stresses are present.). It is assumed that the boundaries of all the domains have twice continuously differentiable curvature and Ω = Ω1 Ω2 Ω3.

The problem under consideration assumes the presence of a static load pressing the stamp to the layer and hindering the formation of a separation zone. Moreover, a dynamic load, harmonic in time, acts on the stamp causing dynamical stresses which are of the greatest interest since the solution of the static problem is obtained as a particular case of the dynamic problem for ω = 0 (ω is the frequency of vibration). The general solution is constructed in the form of a sum of static and dynamic solutions.

A uniqueness theorem is established for the integral equation of the problem mentioned and for the case of axisymmetric vibration of a circular stamp partially coupled rigidly to the layer, partially making friction-free contact, the problem is reduced to an effectively solvable system of integral equations of the second kind, which reduce easily to a Fredholm system.

These results are an extension of the method elucidated in [1], where by the approach in [1] must be altered qualitatively to obtain them.  相似文献   


11.
The action of a rigid stamp moving at a constant speed, on the boundary of an elastic half-space, is investigated. It is assumed that the frictional forces between the stamp and the surface of the half-space are absent. The integral equation obtained in [1] yields formulas for the pressure, for the case when the area of contact between the stamp and the half-space has an elliptic form.  相似文献   

12.
The problem of compression of an elastic plane with a slit of variable width commensurate to the elastic strains is considered. The case of the origination of several contact sections of the slit edges is investigated. Adhesion of the edges hence occurs at some part of the contact area, while slip is possible at the rest of this area. A solution of the problem is obtained in quadratures by the Muskhelishvili method using the apparatus of linear conjugates of analytic functions. The stress and displacement potentials are found, the magnitudes of the contact sections and the adhesion zones are determined. A specific example is analyzed and numerical computations are carried out.The contact problem for a plane weakened by a constant-width rectilinear slit has been considered in [1 – 3].  相似文献   

13.
An expression for the energy flux vector of plate bending vibrations is obtained in invariant form. The derivation of expressions for the transverse force, bending and twisting moments in an arbitrary orthogonal coordinate system and the derivation of an orthogonality type condition for normal waves being propagated in a thin elastic strip with free edges are considered as applications.In a number of cases it turns out to be useful to consider the energy flux vector in analyzing the vibrations in systems with distributed parameters. The expressions for the Umov-Poynting vector in electrodynamics and for the energy flux vector in acoustics are well-known. An analogous vector for the bending Vibrations of a plate was mentioned only in [1 – 3], This vector is used in [1] to prove a uniqueness theorem for a two-component acoustic model consisting of an ideal compressible fluid and elastic plates in contact with it. However, the expression for the energy flux in [1] (it was later cited in [2, 3] with a reference to [1]) is erroneous. An exact expression (within the framework of the applicability of the Kirchhoff equation) is found below for the energy flux vector of the bending vibrations of a plate and some applications of the formulas obtained are mentioned.  相似文献   

14.
The paper deals with shape optimization of elastic bodies in unilateral contact. The aim is to extend the existing results to the case of contact problems, where the coefficient of friction depends on the solution. We consider the two-dimensional Signorini problem, coupled with the physically less accurate model of given friction, but assume a solution-dependent coefficient of friction. First, we investigate the shape optimization problem in the continuous, infinite-dimensional setting, followed by a suitable finite-dimensional approximation based on the finite-element method. Convergence analysis is presented as well. Next, an algebraic form of the state problem is studied, which is obtained from the discretized problem by further approximating the frictional term by a quadrature rule. It is shown that if the coefficient of friction is Lipschitz continuous with a sufficiently small modulus, then the algebraic state problem is uniquely solvable and its solution is a Lipschitz continuous function of the control variable, describing the shape of the elastic body. For the purpose of numerical solution of the shape optimization problem via the so-called implicit programming approach we perform sensitivity analysis by using the tools from the generalized differential calculus of Mordukhovich. The paper is concluded first order optimality conditions.  相似文献   

15.
The transient dynamic contact problem of the impact of a plane absolutely rigid punch on an elastic half-plane is considered. The solution of the integral equation of this problem in terms of the unknown Laplace transform of the contact stresses at the punch base is constructed by a special method of successive approximations. The solution of the transient dynamic contact problem is obtained after applying an inverse Laplace transformation to the solution of the integral equation over the whole time range of the impact process, and the law of the penetration of the punch into the elastic medium is determined from a Volterra-type integrodifferential equation. The conditions for the punch to begin to separate from the elastic half-plane are formulated from the solution obtained, and all the stages of the separation process are investigated in detail. The law of the punch motion on the elastic half-plane and the width of the contact area, which varies during the separation, are then determined from the solution of the Volterra-type integrodifferential equation when an additional condition is satisfied.  相似文献   

16.
The main terms of the asymptotic form of the solution of the contact problem of the compression without friction of an elastic body and a punch initially in point contact are constructed by the method of matched asymptotic expansions using an improved matching procedure. The condition of unilateral contact is formulated taking account of tangential displacements on the contact surface. An asymptotic solution of the problem for the boundary layer is constructed by the complex potential method. An asymptotic model is constructed, extending the Hertz theory to the case where the surfaces of the punch and elastic body in the vicinity of the contact area are approximated by paraboloids of revolution. The problem of determining the convergence of the contacting bodies from the magnitude of the compressive force is reduced to the problem of calculating the so-called coefficient of local compliance, which is an integral characteristic of the geometry of the elastic body and its fixing conditions.  相似文献   

17.
弹性地基上正交各向异性变厚度圆薄板的大挠度问题   总被引:1,自引:0,他引:1  
本文推出了均布载荷下弹性基地上的正交各向异性变厚度圆薄板大挠度问题的基本方程。利用修正迭代法获得了该问题的二阶近似解。  相似文献   

18.
In a line or point contact with an elastohydrodynamic lubricant oil film, solid-to-solid contacts are common and wear will occur at these places. Given that there is only a portion of the load is supported by the direct interaction of roughness asperities, the wear coefficient should be less than that for dry contacts and account for the effect of surface roughness and oil film. Since it is difficult to obtain the wear coefficient value at different oil film thickness by experiments, this paper presents the methodology of determination of wear coefficient in mixed lubrication using finite element method (FEM). In this method, the roughness of contact surfaces is characterized as fractal surfaces by the Weierstrass–Mandelbrot (W–M) function, the sliding wear in mixed lubrication is simulated by the Coupled-Eulerian–Lagrangian (CEL) method and the wear volume is calculated according to the solid–solid contact load. Then the wear coefficient can be determined and the simulation example shows that the wear coefficient decreases nonlinearly with the increasing of oil film thickness and dynamic viscosity in mixed lubrication.  相似文献   

19.
The paper briefly introduces a fast converging mathematical model to predict the peculiarities of the non-conforming contact between an infinitely long cylinder and a coated elastic substrate. The proposed method is then integrated into a multi-physics analysis of the valve train system of a racing type internal combustion (IC) engine. Due to relatively high loads and speeds experienced, particularly in the cam–tappet contacts, hard wear resistant coatings are used, which greatly influence the contact mechanics performance. Results indicate that the layer thickness is the determining factor in contact characteristics, which alters during the cam cycle. Therefore, for optimal performance coatings of non-uniform thickness should ideally be applied to the circumference of the cam rather than the usual coating of the tappet surface with a given thickness.  相似文献   

20.
Lotfi Abdelhakim 《PAMM》2004,4(1):348-349
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method [2, 3]. The global problem is transformed to a independant local problems posed in each bodie and a problem posed on the contact surface (the interface problem). The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure [8]. Our preconditioner construction is based on the application of the H‐matrix technique [6, 7] together with the representation of the H1/2 seminorm by a sum of partial seminorms [4]. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号