首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through the sol–gel route, we have well-controlled the preparation of fluorescent organic nanocrystals grown in silicate thin films. This process is based on the confined nucleation and growth of dyes in the pores of wet gels. The resulting nanocomposite sol–gel thin films, coated onto low-cost substrates, exhibit coupled properties: transparency, stability, easy shaping of sol–gel thin films and high fluorescence intensity coming from organic nanocrystals. The sensitivity of the fluorescence intensity of nanocrystals to their environments can be exploited for the development of optical sensors. Indeed, Förster Resonance Energy Transfer can inhibit nanocrystal fluorescence when probe molecules are adsorbed or grafted on the nanocrystal surface after their diffusion through the pores of the sol–gel matrix. We investigated by time-resolved fluorescence spectroscopy the effect of nanocrystal size and probe concentration on the fluorescence quenching in presence of Methylene Blue used in this study as molecular probe. As strong fluorescence quenchings can be achieved, even for low probe concentrations, these hybrid organic–inorganic nanocoposites are promising for the development of sensor devices by increasing their fluorescence contrasts under specific chemical or biological environments.  相似文献   

2.
High dielectric constant is highly desirable in capacitors and memory devices. In this work, oleic acid (OA)‐capped BaTiO3 nanocrystals were synthesized by a two‐phase approach. Polyimide (PI)/BaTiO3‐nanocrystal composite thin films with high dielectric constant have been successfully fabricated. The morphologies and dielectric properties of the hybrid films were exploited. The results showed that BaTiO3 nanocrystals can be uniformly dispersed in the PI thin films owing to the surface modification of OA‐capped BaTiO3 nanocrystals. It was found that the dielectric constant of composite film varies with the volume fraction of BaTiO3 nanocrystals and sintering temperatures and reaches a maximum value of 44.1, which is around 13 times higher than that of pristine PI thin film (3.2). These results demonstrated that PI/BaTiO3‐nanocrystal composite films have considerable application potential in microelectronic fields.  相似文献   

3.
Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stöber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags—exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported.  相似文献   

4.
Monoshaped and monosized copper nanostructured particles have been prepared by potentiostatic electrochemical deposition on an ultrathin polypyrrole (PPY) film, electrochemically grown on a Si(100) substrate sputter-coated with a thin gold film or gold-film electrode (GFE). The crystal size and the number density of the copper nanocrystals have been examined by varying several deposition parameters, including the thickness of the gold film, the PPY film thickness, the applied potential, and the Cu2+ and the electrolyte concentrations for copper deposition. Optimal conditions for uniform growth ofnanocrystals well-dispersed on the GFE have been determined, along with insight into the mechanism of crystal growth. A minimum gold film thickness of 80 nm is required to eliminate the effects of the gold-silicon interface. The PPY film thickness and homogeneity principally affect the shape uniformity of the nanocrystals, while the copper deposition potential could be used to regulate the size and number density of the nanocrystals. Both the Cu2+ and electrolyte concentrations are also found to play important roles in controlling the electrodeposition of nanocrystal growth.  相似文献   

5.
The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)2 formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area.  相似文献   

6.
Controlled synthesis of semiconductor nanostructures in the liquid phase   总被引:2,自引:0,他引:2  
Zhuang Z  Peng Q  Li Y 《Chemical Society reviews》2011,40(11):5492-5513
The microstructure (composition, size and shape etc.) of semiconductor nanocrystals determine the electronic density of states of semiconductor nanomaterials and ultimately determine their optical and electrical properties. Semiconductor nanocrystal advanced structures, such as hybrid nanostructures and nanocrystal superlattices, not only integrate the function of individual nanocrystals, but also brings the materials collective and synchronic properties. How to control the monodispersity, composition and structure of as-prepared semiconductor nanocrystals during their syntheses, as well as their furthermore assembly, has been a hot research area in this decade. This critical review focuses on the development of synthetic and assembly methods (techniques) of semiconductor nanocrystals processed in the liquid phase. Emphasis is on the synthesis methodology, microstructure related properties of semiconductor nanocrystals, and their applications (243 references).  相似文献   

7.
We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at approximately 200 degrees C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films.  相似文献   

8.
Understanding the evolution process and formation mechanism of nanoscale structures is crucial to controllable synthesis of inorganic nanomaterials with well-defined geometries and unique functionalities. In addition to the conventional Ostwald ripening process, oriented aggregation has been recently found to be prevalent in nanocrystal growth. In this new mechanism, primary small nanocrystals firstly spontaneously aggregate in the manner of oriented attachment, and then the large crystalline materials are formed via the process of interparticle recrystallization. Furthermore, controllable fabrication of the ordered nanocrystal solid materials that has shown specific collective properties will promote the application of inorganic nanocrystal in devices. Therefore, investigation of the mechanism of oriented aggregation is essential to controllable synthesis of nanocrystals and ordered nanocrystal solid materials. In this review, we summarize recent advances in the preparation of nanocrystal materials, which are mostly focused on our work about the role of self-assembly in construction of inorganic nanostructural materials.  相似文献   

9.
We demonstrate that performing a replacement reaction on single crystalline Ag nanospheres of approximately 10 nm in diameter in an organic solvent produces hollow Au nanocrystals with an octahedral shape. Different from those Au shells made by starting with Ag particles about 1 order of magnitude larger, which largely reproduce that of the sacrificial Ag counterparts, the hollow nanocrystals obtained in this work show significant changes in the external morphology from the spherical Ag precursors. This evolution of a faceted external morphology during chemical transformation is made possible by the enhanced role of surface effects in our smaller nanocrystals. The competition between the Au atom deposition and Ag atom dissolution on various nanocrystal surfaces is believed to determine the final octahedral shape of the hollow Au nanocrystals. Simultaneous achievement of surface-mediated shape control and a hollow morphology in a one-pot, single-step synthetic procedure in this study promises an avenue to finer tuning of particle morphology, and thus physical properties such as surface plasmon resonance.  相似文献   

10.
A synthetic route for producing Cu(2)ZnGeSe(4) nanocrystals with narrow size distributions and controlled composition is presented. These nanocrystals were used to produce densely packed nanomaterials by hot-pressing. From the characterization of the thermoelectric properties of these nanomaterials, Cu(2)ZnGeSe(4) is demonstrated to show excellent thermoelectric properties. A very preliminary adjustment of the nanocrystal composition has already resulted in a figure of merit of up to 0.55 at 450 °C.  相似文献   

11.
The preparation of nanocomposite materials from carbon nanotubes (CNTs) and metal or metal oxide nanoparticles has important implications to the development of advanced catalytic and sensory materials. This paper reports findings of an investigation of the preparation of nanoparticle-coated carbon nanotube composite materials. Our approach involves molecularly mediated assembly of monolayer-capped nanoparticles on multiwalled CNTs via a combination of hydrophobic and hydrogen-bonding interactions between the capping/mediating shell and the CNT surface. The advantage of this route is that it does not require tedious surface modification of CNTs. We have demonstrated its simplicity and effectiveness for assembling alkanethiolate-capped gold nanoparticles of 2-5 nm core sizes onto CNTs with controllable coverage and spatially isolated character. The loading and distribution of the nanoparticles on CNTs depend on the relative concentrations of gold nanoparticles, CNTs, and mediating or linking agents. The composite nanomaterials can be dispersed in organic solvent, and the capping/linking shells can be removed by thermal treatment to produce controllable nanocrystals on the CNT surfaces. The nanocomposite materials are characterized using transmission electron microscopy and Fourier transform infrared spectroscopy techniques. The results will be discussed in terms of developing advanced catalytic and sensory nanomaterials.  相似文献   

12.
The synthesis and processing of nanoparticles consisting of metallic nanocrystal cores and organic monolayer shells promise interesting technological applications. Here, we report the synthesis of gold nanoparticles modified with ionic liquids based on the imidazolium cation. Aggregation-induced color changes of the gold nanoparticles in an aqueous solution were used as an optical sensor for anions via anion exchange of ionic liquid moiety. We also demonstrated the phase transfer of the gold nanoparticles from aqueous media to ionic liquid.  相似文献   

13.
The significant fluorescence enhancement of immobilized CdTe nanocrystals through chemical surface modifications is described, enabling us to fabricate stable, highly luminescent thin films and patterns of nanocrystal mono- and mutilayers.  相似文献   

14.
The properties of nanomaterials for use in catalytic and energy storage applications strongly depends on the nature of their surfaces. Nanocrystals with high surface energy have an open surface structure and possess a high density of low-coordinated step and kink atoms. Possession of such features can lead to exceptional catalytic properties. The current barrier for widespread industrial use is found in the difficulty to synthesise nanocrystals with high-energy surfaces. In this critical review we present a review of the progress made for producing shape-controlled synthesis of nanomaterials of high surface energy using electrochemical and wet chemistry techniques. Important nanomaterials such as nanocrystal catalysts based on Pt, Pd, Au and Fe, metal oxides TiO(2) and SnO(2), as well as lithium Mn-rich metal oxides are covered. Emphasis of current applications in electrocatalysis, photocatalysis, gas sensor and lithium ion batteries are extensively discussed. Finally, a future synopsis about emerging applications is given (139 references).  相似文献   

15.
Summary: Nanocomposite films were prepared by two methods in which lead sulfide (PbS) nanocrystals were contained in an organic matrix. One method used a wet chemical synthesis of the nanocrystals in the direct presence of a polymer, where the polymer controlled nanocrystal growth. The second method was gaseous deposition of nanocrystals into the organic phase. The two methods were similar in that the nanocrystals in the composites were free from surfactant capping layers that otherwise would add an interfacial region between the nanocrystal and the organic matrix. The gaseous deposition technique had several advantages over the wet chemical synthesis in that it allowed direct control over nanocrystal size and density, improved flexibility in the choice of organic phase, and was compatible with lithographic methods.  相似文献   

16.
We have developed a new class of plasmonic vesicular nanostructures assembled from amphiphilic gold nanocrystals with mixed polymer brush coatings. One major finding is that the integration of gold nanocrystals (nanoparticles and nanorods) with two types of chemically distinct polymer grafts, which are analogous to block copolymers as a whole, creates a new type of hybrid building block inheriting the amphiphilicity-driven self-assembly of block copolymers to form vesicular structures and the plasmonic properties of the nanocrystals. In contrast to other vesicular structures, the disruption of the plasmonic vesicles can be triggered by stimulus mechanisms inherent to either the polymer or the nanocrystal. Recent advances in nanocrystal synthesis and controlled surface-initiated polymerization have opened a wealth of possibilities for expanding this concept to other types of nanocrystals and integrating different types of nanocrystals into multifunctional vesicles. The development of multifunctional vesicles containing stimuli-responsive polymers could enable their broader applications in biosensing, multimodality imaging, and theragnostic nanomedicine.  相似文献   

17.
A direct process for preparing contiguous gold shells (15-25 nm thick) over amorphous silica spheres (200 nm) is described. In this method, gold seeds are synthesized from HAuCl(4) in a dilute NaOH solution using deposition-precipitation with subsequent metallization by sodium borohydride (NaBH(4)). The ease of dispersing gold nanocrystals on spheres of bare silica and spheres after grafting with ammonia was studied as a function of pH (4-8), reaction temperature (65-96 degrees C), and time (5-30 min). Additional parameters requiring optimization included the quantity of NaBH4 and the HAuCl(4) in K(2)CO(3) solution to silica volume ratio. The evolution of gold nanocrystal growth was monitored by transmission electron microscopy, and the bathochromic shift of ultraviolet-visible absorption was correlated with shell perfection and thickness.  相似文献   

18.
CdS纳米晶与多肽分子相互作用研究   总被引:2,自引:0,他引:2  
陈旭东  王新波  范莉  杨大成 《化学学报》2005,63(17):1600-1606
研究了半导体CdS纳米晶的表面功能化及荧光光谱特性, 并利用静电/配位自组装方法实现了多肽和CdS纳米晶的生物无机偶联, 研究了纳米晶多肽偶联体系的荧光光谱以及多肽与CdS纳米晶之间的相互作用. 结果表明: 含巯基多肽对CdS纳米晶表面形成完善包覆, 消除CdS纳米晶表面缺陷, 使CdS纳米晶荧光增强; 含端氨基多肽使CdS纳米晶荧光出现先升后降趋势; 其余不含巯基和氨基的多肽均猝灭CdS纳米晶荧光, 猝灭机制属于形成化合物所引起的静态猝灭, 它们的结合常数约为2×104, 结合位点数约为0.87~1.00.  相似文献   

19.
Deposition of copper thin films was achieved by a photocatalytic reaction of site-selectively adsorbed TiO(2) nanocrystals for direct fabrication of copper circuit patterns on glass substrates. The nanocrystal monolayers absorbed on hydrophobic surface templates serve as an effective photocatalyst, producing metallic copper and formic acid via oxidation of methanol in solution. The formic acid generated has also been suggested to serve as an electron donor that accelerates copper deposition through a UV-mediated autocatalytic reaction, even after nanocrystals are embedded into the grown copper films. The thickness of the deposited copper films was easily controlled by varying the UV irradiation time, irradiation power, and initial concentration of methanol as a hole scavenger. The process presented herein provides an effective methodology for resist-free, direct metallization of insulating substrates.  相似文献   

20.
Composite films of titanium phosphate (TiPS)/Prussian blue (PB) were fabricated by the alternative deposition of TiPS layer and PB nanocrystals. The layer of TiPS was fabricated by adsorption of hydrated titanium from aqueous Ti(SO4)2 solution and subsequent reaction with phosphate groups. The layer of PB nanocrystals was fabricated by sequential adsorption of FeCl3 solution and K4[Fe(CN)6] solution. Regular deposition of TiPS/PB composite films were verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. The successful fabrication of the TiPS/PB composite films was further confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Instead of producing films of TiPS layers alternating with PB nanocrystal layers, the TiPS/PB composite films have a structure in which the interstices of the PB nanocrystal films are filled with TiPS component. TiPS/PB composite films show enhanced electrochemical properties and improved stability in comparison with pure PB films prepared by the multiple sequential adsorption process. TiPS/PB composite films have the capability to catalyze the electrochemical reduction of H2O2 and can be used as a biosensor for detecting H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号