首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nanocrystalline CaCu3Ti4O12 powders were synthesized by a simple PVA sol–gel route and calcined at 700 and 800°C in air for 8 h. The diameter of the powders ranges from 40–100 nm. The calcined CaCu3Ti4O12 powders were characterized by TG-DTA, XRD, FTIR, SEM, and TEM. Sintering of the powders was conducted in air at 1100°C for 16 h. The XRD results indicated that all sintered samples had a typical perovskite CaCu3Ti4O12 structure although the sintered samples contained some amount of CaTiO3. SEM of the sintered CaCu3Ti4O12 ceramics showed the average grain sizes of 13–15 μm. The samples exhibit a giant dielectric constant, ε′∼105 at 150 to 200°C with weak temperature dependence below 1 kHz in the sample sintered using the powders calcined at 700°C. The Maxwell–Wagner polarization mechanism is used to explain the high permittivity in these ceramics. It is also found that all sintered samples have the same activation energy of grains, which is ∼0.122 eV.  相似文献   

2.
In order to study the influence of powder calcination temperature on lithium ion conductivity, synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) was calcined at temperatures between 750 and 900 °C. The shape and size of the particles were characterized employing scanning electron microscopy (SEM), and specific surface area of the obtained powder was measured. The crystallinity grade of different heat-treated powders was calculated from XRD spectra. Posteriorly, all powders were sintered at 1100 °C employing field-assisted sintering (SPS), and the electrical properties were correlated to the calcination conditions. The highest ionic conductivity was observed for samples made out of powders calcined at 900 °C.  相似文献   

3.
Preparing spherical particles with carbon additive is considered as one effective way to improve both high rate performance and tap density of Li4Ti5O12 and LiFePO4 materials. Spherical Li4Ti5O12/C and LiFePO4/C composites are prepared by spray-drying–solid-state reaction method and controlled crystallization–carbothermal reduction method, respectively. The X-ray diffraction characterization, scanning electron microscope, Brunauer–Emmett–Teller, alternating current impedance analyzing, tap density testing, and electrochemical property measurements are investigated. After hybridizing carbon with a proper quantity, the crystal grain size of active materials is remarkably decreased and the electrochemical properties are obviously improved. The Li4Ti5O12/C and LiFePO4/C composites prepared in this work are spherical. The tap density and the specific surface area are as high as 1.71 g cm−3 and 8.26 m2 g−1 for spherical Li4Ti5O12/C, which are 1.35 g cm−3 and 18.86 m2 g−1 for spherical LiFePO4/C powders. Between 1.0 and 3.0 V versus Li, the reversible specific capacity of the Li4Ti5O12/C is more than 150 mAh g−1 at 1.0-C rate. Between 2.5 and 4.2 V versus Li, the reversible capacity of the LiFePO4/C is close to 140 mAh g−1 at 1.0-C rate.  相似文献   

4.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

5.
Ferroelectric and dielectric properties of bilayered ferroelectric thin films, SrBi4Ti4O15 grown on Bi4Ti3O12, were investigated. The thin films were annealed at 700°C under oxygen atmosphere. The bilayered thin films were prepared on a Pt(111)/Ti/SiO2/Si substrate by a chemical solution deposition method. The dielectric constant and dielectric loss of the bilayered thin films were 645 and 0.09, respectively, at 100 kHz. The value of remnant polarization (2P r) measured from the ferroelectric thin film capacitors was 60.5 μC/cm2 at electric field of 200 kV/cm. The remnant polarization was reduced by 22% of the initial value after 1010 switching cycles. The results showed that the ferroelectric and dielectric properties of the SrBi4Ti4O15 on Bi4Ti3O12 ferroelectric thin films were better than those of the SrBi4Ti4O15 grown on a Pt-coated Si substrate suggesting that the improved properties may be due to the different nucleation and growth kinetics of SrBi4Ti4O15 on the c-axis-oriented Bi4Ti3O12 layer or on the Pt-coated Si substrate.  相似文献   

6.
Pyrochlore-structured materials are very important materials due to their structural and conducting properties. These properties can be further modified by changing processing conditions. In the present study, pyrochlore (Y2Ti2O7) is synthesized using high-energy ball milling. During various stages of ball milling, the ball-milled powder is taken for investigating the structural and thermal properties. The replacement of Ti2O3 by TiO2 in nominal composition leads to lower ball milling duration to form Y2Ti2O7. Differential thermal analysis showed the single exothermic peak below 800 °C, which indicates formation of disordered pyrochlore phase. The as prepared powders (40-h ball milled) were compacted and heat treated at 1,450 °C for 12 h. The conductivity of sintered sample is found to be one order higher than earlier reported pure Y2Ti2O7 pyrochlore.  相似文献   

7.
S/Li4Ti5O12 cathode with high lithium ionic conductivity was prepared for Li-S battery. Herein, nano Li4Ti5O12 is used as sulfur host and fast Li+ conductor, which can adsorb effectively polysulfides and improve remarkably Li+ diffusion coefficient in sulfur cathode. At 0.5 C, S/Li4Ti5O12 cathode has a stable discharge capacity of 616 mAh g?1 at the 700th cycle and a capacity loss per cycle of 0.0196% from the second to the 700th cycle, but the corresponding values of S/C cathode are 437 mAh g?1 and 0.0598%. Even at 2 C, the capacity loss per cycle of S/Li4Ti5O12 cathode is only 0.0273% from the second to the 700th cycle. The results indicate that Li4Ti5O12 as the sulfur host plays a key role on the high performance of Li-S battery due to reducing the shuttle effect and enhancing lithium ionic conductivity.  相似文献   

8.
The Li4Ti5O12 is applied in lithium ion batteries as anode material, which can be synthesized by various synthesis techniques. In this study, the molten salt synthesis technique at low temperatures, i.e. 350 °C, was applied to synthesize Li4Ti5O12. Surprisingly, the Li4Ti5O12 was not formed according to XRD analysis, which raised question about the stability range of Li4Ti5O12. To investigate the stability of Li4Ti5O12 at low temperatures, the high-temperature calcined Li4Ti5O12 powder was equilibrated in the LiCl-KCl eutectic salt at 350 °C. The result of experiment revealed that the Li4Ti5O12 is not decomposed. Results of ab initio calculations also indicated that the Li4Ti5O12 phase is a stable phase at 0 K. The products of molten salt synthesis technique were then annealed at 900 °C, which resulted in the Li4Ti5O12 formation. It was concluded that the Li4Ti5O12 is a stable phase at low temperatures and the reasons for not forming the Li4Ti5O12 by molten salt technique at low temperature are possibly related to activation energy and kinetic barriers. The Li4Ti5O12 formation energy is also very small, due to the results of ab initio calculations.  相似文献   

9.
Pr-doped Li4Ti5O12 in the form of Li4?x/3Ti5?2x/3PrxO12 (x = 0, 0.01, 0.03, 0.05, and 0.07) was synthesized successfully by an electrospinning technique. ICP shows that the doped samples are closed to the targeted samples. XRD analysis demonstrates that traces of Pr3+ can enlarge the lattice parameter of Li4Ti5O12 from 8.3403 to 8.3765 Å without changing the spinel structure. The increase of lattice parameter is beneficial to the intercalation and de-intercalation of lithium-ion. XPS results identify the existence form of Ti is mainly Ti4+ and Ti3+ in minor quantity in Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples due to the small amount of Pr3+. The transition from Ti4+ to Ti3+ is conducive to the electronic conductivity of Li4Ti5O12. FESEM images show that all the nanofibers are well crystallized with a diameter of about 200 nm and distributed uniformly. The results of electrochemical measurement reveal that the 1D Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) nanofibers display enhanced high-rate capability and cycling stability compared with that of undoped nanofibers. The high-rate discharge capacity of the Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples is excellent (101.6 mAh g?1 at 50 °C), which is about 58.48 % of the discharge capacity at 0.2 °C and 4.3 times than that of the bare Li4Ti5O12 (23.5 mA g?1). Even at 10 °C (1750 mA g?1), the specific discharge capacity is still 112.8 mAh g?1 after 1000 cycles (87.9 % of the initial discharge capacity). The results of cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) illustrate that the Pr-doped Li4Ti5O12 electrodes possess better dynamic performance than the pure Li4Ti5O12, further confirming the excellent electrochemical properties above.  相似文献   

10.
This article reports a novel method to prepare MgAl2O4 spinel nanoparticles. By calcining a powder mixture of bayerite and magnesium sulfate at 800 °C and washing with water, single-phase MgAl2O4 spinel nanoparticles were prepared. The powder mixture and the calcined products were characterized by differential thermal and thermogravimetric analysis (DSC-TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) nitrogen-gas adsorption method. The obtained MgAl2O4 spinel nanoparticles have an average particle size of 12 nm, a narrow size distribution, and weak agglomeration. The specific surface area of the MgAl2O4 spinel powder is 110 m2/g. The formation of MgAl2O4 spinel is attributed to a solid-state reaction between γ-Al2O3 and MgSO4.  相似文献   

11.
CaCu3Ti4O12 (CCTO) thin films were successfully prepared on LaAlO3 substrates by pulsed laser deposition technique. We measured the nonlinear optical susceptibility of the thin films using Z-scan method at a wavelength of 532 nm with pulse durations of 25 ps and 7 ns. The large values of the third-order nonlinear optical susceptibility, χ (3), of the CCTO film were obtained to be 2.79×10−8 esu and 3.30×10−6 esu in picosecond and nanosecond time regimes, respectively, which are among the best results of some representative nonlinear optical materials. The origin of optical nonlinearity of CCTO films was discussed. The results indicate that the CCTO films on LaAlO3 substrates are promising candidate materials for applications in nonlinear optical devices.  相似文献   

12.
The double perovskite Sr2NiMoO6 powders and ceramics were prepared by two different (conventional and precursor) solid-state reaction methods. The phase structure was characterized by XRD and TEM techniques. It has been indicated that single-phase perovskite powders were obtained when calcined in air at 1300°C. However, nano-particles of the size 30–60 nm have been found in powders prepared with the precursor method, while those from the conventional route exhibit large irregular shaped particles with aggregation. The dielectric properties (ε r and tanδ) were also examined in the sintered ceramics. The results showed the transition point at 280°C for conventional route, while no clear phase change was observed in ceramics from the precursor route. These observations clearly indicate that the different starting processes affected the phase formation behavior and the electrical properties of Sr2NiMoO6 ceramics.  相似文献   

13.
Using an ordinary ceramic fabrication technique, we fabricated lead-free (1-x)(K0.5Na0.5)NbO3-xBa(Ti0.95Zr0.05)O3 ceramics with CuO sintering aid . Ba(Ti0.95Zr0.05)O3 diffuses into (K0.5Na0.5)NbO3 to form a new solid solution. The ceramics with perovskite structure possess orthorhombic phase at x≤0.04 and become tetragonal phase at x≥0.06. Both the paraelectric cubic–ferroelectric tetragonal and the ferroelectric tetragonal–ferroelectric orthorhombic phase transition temperatures decrease with increasing the concentration of Ba(Ti0.95Zr0.05)O3. The doping of CuO effectively promotes the densification of the ceramics. The coexistence of the orthorhombic and tetragonal phases at 0.04<x<0.06 and the improvement in sintering performances of the ceramics significantly enhance the piezoelectric and dielectric properties at room temperature. The ceramics with x=0.04–0.06 and y=0.75–1.50 possess excellent properties: d33=119–185 pC/N, kP=37–44%, kt=35–49%, ε=341–1129, cosδ=0.7–4.4% and Tc=312–346 °C. PACS 77.65.-j; 77.84.Dy; 77.84.-s  相似文献   

14.
The effects of dopant on the electrochemical properties of spinel-type Li3.97M0.1Ti4.94O12 (M = Mn, Ni, Co) and Li(4-x/3)CrxTi(5-2x/3)O12(x = 0.1, 0.3, 0.6, 0.9, 1.5) were systematically investigated. Charge-discharge cycling were performed at a constant current density of 0.5 mA/cm2 between the cut-off voltages of 3.0 and 1.0 V, the experimental results showed that Cr3+ dopant improved the reversible capacity and cycling stability over the pristine Li4Ti5O12. The substitution of the Mn3+ and Ni3+ slightly decreased the capacity of the Li4Ti5O12. Dopants such as Co3+ to some extent worsened the electrochemical performance of the Li4Ti5O12.  相似文献   

15.
Fine-sized BaO-ZnO-B2O3-SiO2 (BZBS) glass powders were directly prepared by high temperature spray pyrolysis. The hollow glass powders prepared at low preparation temperature of 1000 °C had a low density of 2.65 g/cm3. However, the densities of the BZBS powders obtained at preparation temperatures of 1200 and 1400 °C were each 3.92 and 4.13 g/cm3. The mean size of the BZBS glass powders prepared by spray pyrolysis at preparation temperature of 1400 °C was 0.98 μm. The glass transition temperature (Tg) of the prepared BZBS glass powders was 518.9 °C. The dielectric layers formed from the prepared BZBS glass powders with a dense structure had a clean surface and a dense inner structure without voids at the firing temperature of 580 °C. The transparencies of the dielectric layers formed from the prepared BZBS glass powders were higher than 90% within the visible range. PACS 42.70.Ce; 85.60.Pg; 71.55.Jv  相似文献   

16.
This work is devoted to the study of fundamental properties of LiFePO4 (LFP) olivine in view of the optimization of this material for its use as a positive electrode material in Li-ion batteries. The investigation of the electronic and magnetic properties appears to be successful for the detection of a small amount of impurities. By the combination of X-ray diffraction, optical spectroscopy, and magnetometry, we characterize the local structure and the morphology of LFP particles. The impact of the ferromagnetic clusters (γ-Fe2O3 or Fe2P) on the electrochemical response is examined. The electrochemical performance of the optimized LFP powders investigated at 60 °C is excellent in terms of capacity retention (153 mAh/g at 2 C) as well as cycling life. No iron dissolution was observed after 200 charge–discharge cycles at 60 °C for cells containing Li foil, Li4Ti5O12, or graphite as negative electrodes. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007.  相似文献   

17.
In order to improve the rate capability of Li4Ti5O12, Ti4O7 powder was successfully fabricated by improved hydrogen reduction method, then a dual-phase composite Li4Ti5O12/Ti4O7 has been synthesized as anode material for lithium-ion batteries. It is found that the Li4Ti5O12/Ti4O7 composite shows higher reversible capacity and better rate capability compared to Li4Ti5O12. According to the charge-discharge tests, the Li4Ti5O12/Ti4O7 composite exhibits excellent rate capability of 172.3 mAh g?1 at 0.2 C, which is close to the theoretical value of the spinel Li4Ti5O12. More impressively, the reversible capacity of Li4Ti5O12/Ti4O7 composite is 103.1 mAh g?1 at the current density of 20 C after 100th cycles, and it maintains 84.8% of the initial discharge capacity, whereas that of the bare spinel Li4Ti5O12 is only 22.3 mAh g?1 with a capacity retention of 31.1%. The results indicate that Li4Ti5O12/Ti4O7 composite could be a promising anode material with relative high capacity and good rate capability for lithium-ion batteries.  相似文献   

18.
A novel kind of nano-sized TiO2 (anatase) was obtained by high-temperature (400–700°C) dehydration of nanotube titanic acid (H2Ti2O4(OH)2, NTA). The high-temperature (400–700°C) dehydrated nanotube titanic acids (HD-NTAs) with a unique defect structure exhibited a p-type semiconductor behavior under visible-light irradiation ( nm, E photon=2.95 eV), whereas exhibited an n-type semiconductor behavior irradiated with UV light ( nm, E photon=3.40 eV).  相似文献   

19.
LiSn2P3O12 with sodium (Na) super ionic conductor (NASICON)-type rhombohedral structure was successfully obtained at low sintering temperature, 600 °C via citric acid-assisted sol-gel method. However, when the sintering temperature increased to 650 °C, triclinic structure coexisted with the rhombohedral structure as confirmed by X-ray diffraction analysis. Conductivity–temperature dependence of all samples were studied using impedance spectroscopy in the temperature range 30 to 500 °C, and bulk, grain boundary and total conductivity increased as the temperature increased. The highest bulk conductivity found was 3.64?×?10?5 S/cm at 500 °C for LiSn2P3O12 sample sintered at 650 °C, and the lowest bulk activation energy at low temperature was 0.008 eV, showing that sintering temperature affect the conductivity value. The voltage stability window for LiSn2P3O12 sample sintered at 600 °C at ambient temperature was up to 4.4 V. These results indicated the suitability of the LiSn2P3O12 to be exploiting further for potential applications as solid electrolytes in electrochemical devices.  相似文献   

20.
The effect of thickness of oxide-sensing electrode (SE) on NO2 sensitivity of the planar sensor based on yttria-stabilized zirconia (YSZ) was examined at high temperatures. The sensitivity of the sensor increased with decreasing thickness of SE, and the highest sensitivity was obtained by using the thinnest layer of Cr2O3–SE (2.7 μm) at 700 °C. In the case of NiO–SE, the highest sensitivity was observed for the sensor using the 4 μm-thick SE even at high temperature of 850 °C. Based on the results of the measurements for the complex impedances, the polarization curves, and the gas-phase NO2 decomposition catalysis, it was confirmed that the catalytic activity to the gas-phase NO2 decomposition on the oxide–SE matrix played an important role in determining the NO2 sensitivity of the present sensors. This artice was accidentally published twice. This is the second publication, please cite only the authoritative first one which is available at . An additional erratum is available at . An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号