首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition.  相似文献   

2.
A detailed study is made of the structures and relative stabilities of nickel and aluminium clusters and nickel-aluminium "nanoalloy" clusters, with up to 55 atoms, modelled by the many-body Gupta potential. Random search and genetic algorithms are used to find the lowest energy isomers (both geometrical and permutational). For the pure Al and Ni clusters, the lowest energy structures are identical for most nuclearities but different structures are found for clusters with 15-18 atoms -- the Al clusters having non-icosahedral structures. For these nuclearities, we investigate the effect of doping Al atoms into pure Ni clusters and vice versa, finding that the replacement of a single atom by a dopant atom is often sufficient to change the cluster geometry. The lowest energy isomers of nanoalloy clusters with the approximate composition "Ni3Al" generally have structures based on icosahedral packing, though truncated octahedral (fcc packing) motifs are also observed. In agreement with previous studies, the atom ordering in the mixed Ni-Al clusters is found to depend on the maximization of the number of Ni-Al interactions, the minimization of the cluster surface energy, and atom size effects.Received: 17 January 2003, Published online: 17 July 2003PACS: 36.40.Mr Spectroscopy and geometrical structure of clusters - 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 61.66.Dk AlloysM.S. Bailey: Present address: Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.  相似文献   

3.
蒋元祺  彭平 《物理学报》2018,67(13):132101-132101
采用第一原理对以Cu为心的低能稳态Cu_nZ_(r13-n)(n=6,7,8,9)二十面体团簇的电子结构进行计算,结果表明:同一化学组分下,以Cu为心的Cu-Zr二十面体团簇中出现的同类原子聚集现象可以增强团簇的稳定性,降低费米能级(EF)上的电子数N(EF),这为低能稳态团簇拥有较小的N(EF)提供了深层次的理论解释.进一步的差分电子密度与Mulliken布居分析得知,Cu-Zr二十面体中共价键与离子键共存,成键态与反键态共存,且团簇在形成时壳层Zr与中心Cu原子是电子的提供者,壳层Cu是电子的获得者.该电荷转移方向是金属玻璃中以Cu为心的Cu-Zr二十面体团簇普遍遵循的规律,不随团簇的化学序参数及化学组分的变化而变化.计算的红外振动谱为实验上准确表征不同二十面体原子团提供了一种新的思路.  相似文献   

4.
We report the recent findings of metal (M) encapsulated clusters of silicon from computer experiments based on ab initio total energy calculations and a cage shrinkage and atom removal approach. Our results show that using a guest atom, it is possible to wrap silicon in fullerenelike (f) structures, as sp2 bonding is not favorable to produce empty cages unlike for carbon. Transition M atoms have a strong bonding with the silicon cage that are responsible for the compact structures. The size and structure of the cage change from 14 to 20 Si atoms depending upon the size and valence of the M atom. Fewer Si atoms lead to relatively open structures. We find cubic, f, Frank-Kasper (FK) polyheral type, decahedral, icosahedral and hexagonal structures for M@Sin with n = 12-16 and several different M atoms. The magic behavior of 15 and 16 atom Si cages is in agreement with experiments. The FK polyhedral cluster, M@Si16 has an exceptionally large density functional gap of about 2.35 eV calculated within the generalized gradient approximation. It is likely to give rise to visible luminescence in these clusters. The cluster-cluster interaction is weak that makes such clusters attractive for cluster assembled materials. Further studies to stabilize Si20 cage with M = Zr, Ba, Sr, and Pb show that in all cases there is a distortion of the f cage. Similar studies on M encapsulated germanium clusters show FK polyhedral and decahedral isomers to be more favorable. Also perfect icosahedral M@Ge12 and M@Sn12 clusters have been obtained with large gaps by doping with divalent M atoms. Recent results of the H interaction with these clusters, hydrogenated silicon fullerenes as well as assemblies of clusters such as nanowires and nanotubes are briefly presented.  相似文献   

5.
液态金属In凝固过程中微观结构转变的模拟研究   总被引:4,自引:0,他引:4       下载免费PDF全文
采用分子动力学方法对液态金属In的快速凝固过程进行计算机模拟跟踪研究.运用HA键型指 数法和原子成团类型指数法分析了金属原子In的成键类型和形成的原子团簇结构.发现:与通常的液态金属(如Al)相反,随着温度的降低,二十面体及与二十面体相关的1 551 键越来越少;与四方体,六角密堆积相关的1421,1422和1431键数目总和变化很小;而与菱 面体相关的132l,1311,1301和1201的数目却随着温度的降低而显著增加,逐渐占据优势 .最后形成一种新型的以菱面体结构为主、夹杂着立方体(fcc,bcc) 关键词: 液态金属In 微结构转变 团簇结构 分子动力学 计算机模拟  相似文献   

6.
We show by molecular dynamics simulations that the melting temperature of clusters can be tuned by selective doping. In fact, a single Ni or Cu impurity in Ag icosahedral clusters considerably increases the melting temperature even for sizes of more than a hundred atoms. The upward shift is correlated to the strain relaxation induced by a small central impurity in icosahedral clusters.  相似文献   

7.
H.Z. Fang  G.L. Chen 《Physics letters. A》2008,372(36):5831-5837
The structural transitions of Cu during two distinct quenching processes (Q1: 4.0×1013 K/s, Q2: 2.0×1014 K/s) were investigated by ab initio molecular dynamics simulation. The variations with temperature of internal energy, pair correlation functions g(r) and bond pairs have been characterized in both quenching processes. It is shown that liquid Cu transforms to fcc phase at the temperature about 600 K under the quenching condition Q1. The investigation of atomic diffusion by mean square displacement further demonstrates this result. When quenched under Q2, however, the liquid Cu is frozen into glass state at the temperature about 800 K. This work also reveals that icosahedral and tetrahedral clusters are predominant in the liquid state, while the icosahedral, bcc and tetrahedral clusters predominate in the glass state. The icosahedral and bcc short range ordering (SRO) are largely enhanced during the liquid-glass quenching process, whereas the tetrahedral SRO is slightly decreased.  相似文献   

8.
The structural evolution and atomic structure of the Ti50Cu50 compound have been investigated by means of molecular dynamics simulation using the generalized embedded-atom model (GEAM) potential. Gibbs free energy calculation manifests the large driving force of undercooled Ti50Cu50 for crystallization and thus the poor glass-forming ability. Radial distribution functions (RDFs) within the temperature range from 2000 K to 300 K are analyzed and reveal the increasing degree of short-range order and reducing periodic length between peaks on cooling. Atomic arrangement is characterized by the Voronoi tessellation method, showing that the frequency of icosahedral configurations is most sensitive to temperature and grows upon quenching while that of the others remains relatively stable. The thermal behavior of the structure factors follows the Debye model up to the supercooled liquid temperature. The structural investigation of amorphous Ti50Cu50 demonstrates that there exist a variety of polyhedral configurations in Ti50Cu50 amorphous alloy, where icosahedral and bcc clusters are the major types. Due to the existence of bcc clusters and the other distorted polyhedra other than full icosahedra, the structural analysis reconfirms the inference from the Gibbs free energy calculation.  相似文献   

9.
The binding energy of atoms in icosahedral and face-centered-cubic clusters is calculated numerically for pairwise Morse-potential interactions between atoms and for clusters containing from 561 to 923 atoms, which corresponds to gradual filling of the sixth layer of the icosahedral cluster. Perturbation theory is used to calculate the cluster binding energy, in which the small parameter is the ratio of the interaction energy between non-nearest neighbor atoms to the interaction energy between nearest neighbors. Values of the Morse interaction potential parameter are found for which the energies of clusters with different structures coincide. Under the conditions used in these computations, the strain energy of a cluster can be neglected. Although the contribution of the interaction energy between non-nearest neighbors to the total cluster energy is small, it turns out to be important in finding the level crossing parameter. Zh. éksp. Teor. Fiz. 112, 1082–1090 (September 1997)  相似文献   

10.
We report the synthesis of alpha-AlReSi and show that it is a 1/1-cubic approximant phase of the icosahedral quasicrystal with a = 12.9 A. The trend of the resistivity of the new approximant phase shows a nonmetallic character, similar to those seen in the stable icosahedral phases. The resistivity depends sensitively on the Re concentration and the nonmetallic transport is observed only at the Re concentration close to 17.4 at. %, where the transition metal sites in the icosahedral cluster are exclusively occupied by Re atoms. In view of a recent ab initio calculation, the present result suggests strongly the formation of the virtual bound states, or confinement of electrons, in the icosahedral clusters of transition metal atoms.  相似文献   

11.
The melting behaviour of four typical core-shell structured 309-atom Ag-Rh bimetallic clusters, with decahedral and icosahedral geometric configurations, is investigated by using molecular dynamics simulation, based on the Sutton-Chen potential. The initial atomic configurations are obtained from semi-grand canonical ensemble Monte Carlo simulations. It is found that the melting point temperature Tm increases with the mole fraction of Rh in the bimetallic clusters, and Tm of Ag-Rh icosahedral clusters is higher than those of Ag-Rh decahedral clusters with the same Rh mole fraction. It is also found that the Ag atoms lie on the surface of Ag-Rh bimetallic clusters even after melting.  相似文献   

12.
本文采用密度泛函理论研究了Cr原子单掺杂和双掺杂(ZnSe)_(12)团簇的结构、电子性质和磁性质.考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂.单掺杂时,外掺杂团簇是最稳定结构,而对于双掺杂,内掺杂团簇是最稳定结构.团簇磁矩主要来自Cr-3d态的贡献,4s和4p态也贡献了一小部分磁矩.由于轨道杂化,相邻的Zn和Se原子上也产生少量自旋.结果显示Cr原子间的磁性耦合是短程相互作用.  相似文献   

13.
本文采用密度泛函理论研究了V原子单掺杂和双掺杂(ZnS)12团簇的几何结构和能量稳定性。我们考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂。单掺杂时,替代掺杂团簇是最稳定结构,而对于双掺杂,外掺杂团簇是最稳定结构。团簇磁矩主要来自V-3d态的贡献,4s和4p态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和S原子上也产生少量自旋。结果显示V原子间的磁性耦合是短程相互作用。相邻V原子之间的磁性耦合由直接的V-V反铁磁耦合和两个V和S原子之间通过p-d杂化产生的铁磁耦合这两中相互作用的竞争来决定。  相似文献   

14.
The evolution of the magnetic moment in iron clusters containing 20-400 atoms is investigated using first-principles numerical calculations based on density-functional theory and real-space pseudopotentials. Three families of clusters are studied, characterized by the arrangement of atoms: icosahedral, body-centered cubic centered on an atom site, and body-centered cubic centered on the bridge between two neighboring atoms. We find an overall decrease of magnetic moment as the clusters grow in size towards the bulk limit. Clusters with faceted surfaces are predicted to have magnetic moment lower than other clusters with similar size. As a result, the magnetic moment is observed to decrease as function of size in a nonmonotonic manner, which explains measurements performed at low temperatures.  相似文献   

15.
Atomic mechanism of homogeneous melting of bcc Fe is studied via monitoring spatiotemporal arrangements of the liquid-like atoms, which are detected by the Lindemann criterion of melting, during the heating process. Calculations are performed by molecular dynamics (MD) simulations. Calculations show that liquid-like atoms occur randomly in the crystalline matrix at temperature far below the melting point due to local instability of the crystalline lattice. Number of liquid-like atoms increases with increasing temperature and they have a tendency to form clusters. Subsequently, a single percolated liquid-like cluster is formed in the crystalline model and at the melting point 99% atoms in the model become liquid-like to form a liquid phase. Melting is also accompanied by the sudden changes in various static and thermodynamic quantities. However, total melting is reached just at the point above the melting one. Three characteristic temperatures of the homogeneous melting of bcc Fe are determined.  相似文献   

16.
Surface tension and pressure (stress) tensors of Lennard-Jones clusters, in the size range 200 ~ 2700 atoms/cluster, formed from evaporating liquid droplets were calculated in a Molecular Dynamics simulation. Icosahedral clusters have a much larger surface tension than decahedral, fcc, and hcp ones, meanwhile asymmetric icosahedral clusters have a lower surface tension. Fcc and hcp clusters have a very small surface tension. Decahedral clusters have a surface tension closer to that of fcc and hcp ones than to that of icosahedral ones, though both icosahedral and decahedral structures have five fold symmetry axis. Binary component clusters have a higher surface tension than single component ones.  相似文献   

17.
A first-principles density functional investigation has been performed to evaluate the structural, electronic, and magnetic properties of (ZnS)12 doped with one or two transition-metal (TM) atoms (Fe, Co, and Ni). Substitutional- and interstitial-doping are considered. The substitutional isomers are found to be most favorable for Fe-doped clusters, while the interstitial isomers are found to be most favorable for Co- and Ni-doped clusters. Magnetic coupling between the TM atoms at the nearest neighbor position is mainly governed by the competition between direct ferromagnetic and antiferromagnetic interactions between two TM atoms via the S atom due to strong p-d hybridization. The coupling is short-ranged. Most importantly, we demonstrate that the Fe and Ni endohedral bi-doped (ZnS)12 clusters favor the ferromagnetic state, which has potential applications in nanoscale quantum devices.  相似文献   

18.
钛和氧之间存在多种成键方式,但迄今为止,二氧化钛团簇均只有少数几种异构体被报道. 与广泛使用的全局优化方法不同,本工作通过优化大量的随机初始结构,获得(TiO2)n (n=2-8)团簇稳定异构体. 首先利用PM6半经验方法对高达一万个以上的初始结构进行初步的优化筛选,并对筛选出的结构进行进一步的DFT计算以获得二氧化钛团簇的稳定异构体. 利用这种策略,发现了大量未经报道的稳定异构体,并提出了(TiO2)5和(TiO2)8新的最稳定异构体. 这些结构中包括含3个末端氧原子的异构体、含5配位氧原子和6配位钛原子的异构体等未经报道的新结构类型. 与丰富成键特征相对应,发现异构体数目随团簇尺寸的增大而急剧增加,对于(TiO2)7和(TiO2)8,能量在30 kcal/mol以内的异构体都在50个以上. 该工作发现了大量的二氧化钛小型团簇异构体,并凸显了其多样的结构特征,增进了对二氧化钛纳米团簇的结构、成键的理解,并为进一步的理论模拟、力场优化等提供了理论基础.  相似文献   

19.
A new mechanism is proposed for the formation of fullerenes from clusters of a “latent” phase, which are referred to as kvatarons. According to this mechanism, hollow kvatarons initially arise in a supersaturated carbon-containing medium and then transform into rigid clusters (fullerenes) with characteristic icosahedral symmetry due to the formation of bonds between carbon atoms.  相似文献   

20.
金团簇掺杂镍原子的量子化学研究   总被引:1,自引:0,他引:1  
利用基于密度泛函理论的量子化学从头计算方法,计算了金掺杂镍原子团簇AunNi2(n=1~4)的稳定结构和对应的电子态,部分稳定结构具有较高的自旋多重性.比较研究AunNi2和Aun的稳定性,结果表明Au-Ni相互作用较强,掺入两个Ni原子提高了纯金团簇的稳定性,而且团簇体积越大,这种影响越小,计算结果还再现了封闭结构高稳定性质的振荡性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号