首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compare the atomic dynamics of the glass to that of the relevant crystal. In the spectra of inelastic scattering, the boson peak of the glass appears higher than the transverse acoustic (TA) singularity of the crystal. However, the density of states shows that they have the same number of states. Increasing pressure causes the transformation of the boson peak of the glass towards the TA singularity of the crystal. Once corrected for the difference in the elastic medium, the boson peak matches the TA singularity in energy and height. This suggests the identical nature of the two features.  相似文献   

2.
We compare the atomic motions in a glass and in a relevant crystal using nuclear inelastic scattering, a technique that determines the exact number of vibrational states. The results show that around the boson peak, the number of states in a glass is exactly the same as the number of sound wave states in the crystal around the transverse acoustic (TA) van Hove singularity. Furthermore, increasing pressure causes the transformation of the boson peak of the glass towards the TA singularity of the crystal. Once corrected for the difference in the elastic medium, the boson peak matches the TA singularity in energy and height. This suggests the identical nature of the two features.  相似文献   

3.
We investigate the effects of high pressure and physical aging on the boson peak and thermal expansion of a typical metallic glass. Specifically, the thermal expansion coefficient and boson peak intensity monotonically decrease during physical aging.With the increase of high pressure, the boson peak intensity and the thermal expansion coefficient coincidently experience an incipient decrease and then a subsequent increase. The boson peak intensity shows an approximately linear relationship with the thermal expansion coefficient. The thermal expansion can be affected by structural relaxation or rejuvenation, which can reflect the flow units variation and atomic packing of a metallic glass. Our results indicate a direct link between structural relaxation or rejuvenation and fast boson peak dynamics, providing insights into the boson peak behavior and structural heterogeneity of metallic glasses.  相似文献   

4.
We present helium atom scattering measurements of the boson peak at the surface of vitreous silica between 127.0 and 368.5 K. The most probable energy shows a strong temperature dependence and increases linearly with temperature in the measured range. The observed blueshift of the surface boson peak (shift rate 0.008+/-0.002 meV/K) is a factor of 4 to 10 times stronger than shift rates measured in the bulk by inelastic neutron and Raman scattering. We suggest that the anomalous shift direction of the boson peak to higher energies with increasing temperature has the same origin as the unusual temperature dependence of the bulk modulus of silica glass.  相似文献   

5.
A so-called boson peak in the reduced density g(ω)ω2 of vibrational states is one of the most universal properties of amorphous solids (glasses). It quantifies the excess density of states above the Debye value at low frequencies ω. Its nature is not fully understood and, at a first sight, is nonuniversal. It is shown in this work that, under rather general assumptions, the boson peak emerges in a natural way in very dissimilar models of stable random dynamic matrices possessing translational symmetry. This peak can be shifted toward both higher and lower frequencies (down to zero frequency) by varying the parameters of the distribution and the degree of disorder in the system. The frequency ωb of the boson peak appears to be proportional to the elastic modulus E of the system in all cases under investigation.  相似文献   

6.
Using probe molecules with resonant nuclei and nuclear inelastic scattering, we are able to measure the density of states exclusively for collective motions with a correlation length of more than approximately 20 A. Such spectra exhibit an excess of low-energy modes (boson peak). This peak behaves in the same way as that observed by conventional methods. This shows that a significant part of the modes constituting the boson peak is of collective character. At energies above the boson peak, the reduced density of states of the collective motions universally exhibits an exponential decrease.  相似文献   

7.
This is a study of the equilibrium thermodynamics of a mean-field model of an interacting boson gas perturbed by a term quadratic in the occupation numbers of the free-gas energy-levels. We prove the existence of the pressure in the thermodynamic limit. We obtain also a variational formula for the pressure; this enables us to compare the effect of a smooth quadratic perturbation with that of a singular one (the Huang-Yang-Luttinger model). The proof uses a large deviation result for the occupation measure of the free boson gas which is of independent interest.  相似文献   

8.
Recently, the CDF Collaboration reports an anomaly in dijet mass distribution in association with a lepton and missing energy. We discuss a possibility that the origin of the lepton and missing energy comes not from a W boson but a new boson particle, which is also responsible for the dijet mass peak. We show that such a situation can be realized in the framework of the minimal supersymmetric standard model and the dijet anomaly can be explained.  相似文献   

9.
The boson peak is an excess in the phonon density of states compared to the Debye model that appears in almost all glasses. It has been repeatedly measured in the bulk by a variety of methods, but its origin is still highly debated. Here we present first experimental evidence of the boson peak on the v-SiO2 surface. The measurements were obtained by helium atom scattering. The boson peak appears as a dispersionless mode of approximately 4 meV in the recorded time-of-flight spectra. It is clearly identified as an excess contribution to the low energy Debye-like region in the surface phonon spectral density which is extracted from the time-of-flight spectra using a straightforward theoretical model.  相似文献   

10.
We analyze the free boson gas on a Cayley tree using two alternative methods. The spectrum of the lattice Laplacian on a finite tree is obtained using a direct iterative method for solving the associated characteristic equation and also using a random walk representation for the corresponding fermion lattice gas. The existence of the thermodynamic limit for the pressure of the boson lattice gas is proven and it is shown that the model exhibits boson condensation into the ground state. The random walk representation is also used to derive an expression for the Bethe approximation to the infinite-volume spectrum. This spectrum turns out to be continuous instead of a dense point spectrum, but there is still boson condensation in this approximation.  相似文献   

11.
Orientational disorder in some molecular solids is discussed in relation to the emphasis placed on transverse vibrational modes in glasses as the origin of the observed boson peak in two very recent contributions in Nature Materials. In particular, facts are here presented for (i) CH4, (ii) C60 and (iii) ethanol in their solid phases for (a) specific heat and (b) neutron scattering. The results for ethanol in particular do not fit in with the interpretation of the boson peak in terms of transverse acoustic phonons in disordered systems. Glasses will therefore have to be separated into at least two classes where the physical interpretation of the boson peak is concerned.  相似文献   

12.
We extend the usual static view of short range order in metallic glasses to a dynamical model of local order. We use an atomistic simulation of a NiZr glass to investigate time-dependent fluctuations of the atomic environment. We show that, even in the "frozen" glass, the solute-centered clusters change their identities between distinct polyhedron types. The frequency spectrum of these transitions exhibits a characteristic peak which we show to be related to a universal vibrational anomaly of disordered solids: the controversial boson peak.  相似文献   

13.
The origin of the boson peak in models with force-constant disorder has been established by calculations using the coherent potential approximation. The analytical results obtained are supported by precise numerical solutions. The boson peak in the disordered system is associated with the lowest van Hove singularity in the spectrum of the reference crystalline system, pushed down in frequency by disorder-induced level-repelling and hybridization effects.  相似文献   

14.
Hyper-Raman spectroscopy is used to investigate low frequency vibrations of various silica glasses. A strong boson peak is observed. The corresponding modes are inactive in infrared and Raman spectra, and are nonacoustic in nature. The shape of this boson peak essentially matches the total density of vibrational states (DOS), with a constant coupling coefficient C. This and other indications suggest that these modes actually dominate the DOS of silica.  相似文献   

15.
Measurement of the low temperature neutron excess of scattering of H2O-hydrated plastocyanin relative to D2O-hydrated protein allowed us to reveal the presence of an inelastic peak at about 3.5 meV. This excess of vibrational modes, elsewhere termed "boson peak," is due to the dynamical behavior of the water molecules belonging to the H2O-hydration shell surrounding the protein. The relevance of the boson peak to the dynamical coupling between the solvent and the protein, and hence to the protein functionality is addressed.  相似文献   

16.
We study a scenario that a hidden gauge boson constitutes the dominant component of dark matter and decays into the standard model particles through a gauge kinetic mixing. Interestingly, gamma rays and positrons produced from the decay of hidden gauge boson can explain both the EGRET excess of diffuse gamma rays and the HEAT anomaly in the positron fraction. The spectra of the gamma rays and the positrons have distinctive features; the absence of line emission of the gamma ray and a sharp peak in the positron fraction. Such features may be observed by the FGST and PAMELA satellites.  相似文献   

17.
We have measured the low-frequency Raman scattering in neutron-irradiated quartz crystals with four different irradiation doses from 4.7×1019 n/cm2 to 1×1020 n/cm2 and for 2 different crystallographic directions. For the used doses the range of density change of the investigated samples was 12% (the maximum change during amorphization is 14%) and the amorphous fraction varied from 35% to 100%. The same measurement was done in neutron-irradiated amorphous silica with a maximal dose 2×1020 n/cm2. In all cases we observed the boson peak in the Raman spectra. The position of the peak, at 67±3 cm-1, was found to be the same for all the investigated samples independent of the dose. The shape of the peak for doses 6.8× 1019 n/cm2 and higher was also found to be the same for 5 investigated samples (including irradiated vitreous silica). We found that the position of the boson peak in neutron-irradiated quartz crystals and vitreous silica corresponds to the Ioffe-Regel crossover frequency for phonons. The origin of the boson peak in neutron-irradiated quartz and vitreous silica can be attributed to local soft optic modes, which are analogous to the soft optic mode that drives the α–β transition in quartz.  相似文献   

18.
We combine Creutz energy conservation with Kawasaki spin exchange to simulate the microcanonical dynamics of a system of interacting particles. Relaxation occurs via Glauber spin-flip activation using a self-consistent temperature. Heterogeneity in the dynamics comes from finite-size constraints on the spin exchange that yield a distribution of correlated regions. The simulation produces a high-frequency response that can be identified with the boson peak, and a lower-frequency peak that contains non-Debye relaxation and non-Arrhenius activation, similar to the primary response of supercooled liquids.  相似文献   

19.
G. Degrassi  P. Slavich   《Nuclear Physics B》2008,805(1-2):267-286
We present explicit analytic results for the two-loop top/stop/gluino contributions to the cross section for the production of CP-even Higgs bosons via gluon fusion in the MSSM, under the approximation of neglecting the Higgs boson mass with respect to the masses of the particles circulating in the loops. The results are obtained employing the low-energy theorem for Higgs interactions adapted to the case of particle mixing. We discuss the validity of the approximation used by computing the first-order correction in an expansion in powers of the Higgs boson mass. We find that, for the lightest CP-even Higgs boson, the gluino contribution is very well approximated by the result obtained in the limit of vanishing Higgs mass. As a byproduct of our calculation, we provide results for the two-loop QCD contributions to the photonic Higgs decay.  相似文献   

20.
This Letter presents a mechanism of acoustic phonon broadening for frequencies lower than the boson peak frequency in glasses exhibiting a high-frequency sound above the boson peak. The mechanism is based on a resonant interaction of an acoustic phonon with harmonic vibrational excitations of soft modes in such glasses. The related width of the phonon is found to be independent of temperature and characterized by a power-law frequency dependence ν?ν?, with the exponent ?   varying from ?≈2?2 below the boson peak to ?≈4?4 at lower frequencies. The dependencies do not appear to contradict some recent experimental data, for the glasses under discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号