首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Pulsed electron paramagnetic resonance spectroscopy of the photoexcited, metastable triplet state of the oxygen-vacancy center in silicon reveals that the lifetime of the m(s)=±1 sublevels differs significantly from that of the m(s)=0 state. We exploit this significant difference in decay rates to the ground singlet state to achieve nearly ~100% electron-spin polarization within the triplet. We further demonstrate the transfer of a coherent state of the triplet electron spin to, and from, a hyperfine-coupled, nearest-neighbor (29)Si nuclear spin. We measure the coherence time of the (29)Si nuclear spin employed in this operation and find it to be unaffected by the presence of the triplet electron spin and equal to the bulk value measured by nuclear magnetic resonance.  相似文献   

2.
In this article, I present a theoretical study of the electron and nuclear spin coherence times of shallow donor spin qubits in zinc oxide (ZnO) at low temperature. The influence of different spin-phonon processes as well as different spin-spin processes on the spin coherence time of shallow donors in ZnO is considered, both in the case of an electron spin qubit and in the case of a nuclear spin qubit encoded on a shallow donor. It is estimated that the electron spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of microseconds, limited by the nuclear spectral diffusion process. The electron spin coherence time of an isolated indium shallow donor can be extended to few milliseconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the electron spin coherence time of an isolated indium shallow donor is only limited by a spin-lattice decoherence process. It is also estimated that the nuclear spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of milliseconds, limited by the nuclear spectral diffusion process. The nuclear spin coherence time of an isolated indium shallow donor can be extended to few seconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the nuclear spin coherence time of an isolated indium shallow donor is only limited by the cross relaxation decoherence process. This study thus shows the great potential of electron and nuclear spin qubits encoded on shallow donors in isotopically and chemically purified quasi-intrinsic ZnO for the implementation of quantum processor and/or quantum memories.  相似文献   

3.
We demonstrate the suppression of nuclear-spin fluctuations in an InAs quantum dot and measure the timescales of the spin narrowing effect. By initializing for tens of milliseconds with two continuous wave diode lasers, fluctuations of the nuclear spins are suppressed via the hole-assisted dynamic nuclear polarization feedback mechanism. The fluctuation narrowed state persists in the dark (absent light illumination) for well over 1 s even in the presence of a varying electron charge and spin polarization. Enhancement of the electron spin coherence time (T2*) is directly measured using coherent dark state spectroscopy. By separating the calming of the nuclear spins in time from the spin qubit operations, this method is much simpler than the spin echo coherence recovery or dynamic decoupling schemes.  相似文献   

4.
We review our theoretical work on the dynamics of a localized electron spin interacting with an environment of nuclear spins. Our perturbative calculation is valid for arbitrary polarization p of the nuclear spin system and arbitrary nuclear spin I in a sufficiently large magnetic field. In general, the electron spin shows rich dynamics, described by a sum of contributions with exponential decay, nonexponential decay, and undamped oscillations. We have found an abrupt crossover in the long-time spin dynamics at a critical shape and dimensionality of the electron envelope wave function. We conclude with a discussion of our proposed scheme to measure the relevant dynamics using a standard spin–echo technique.  相似文献   

5.
The time-resolved Hanle effect is examined for negatively charged InGaAs/GaAs quantum dots. Experimental data are analyzed by using an original approach to separate behavior of the longitudinal and transverse components of nuclear polarization. This made it possible to determine the rise and decay times of each component of nuclear polarization and their dependence on transverse magnetic field strength. The rise and decay times of the longitudinal component of nuclear polarization (parallel to the applied field) were found to be almost equal (approximately 5 ms). An analysis of the transverse component of nuclear polarization shows that the corresponding rise and decay times differ widely and strongly depend on magnetic field strength, increasing from a few to tens of milliseconds with an applied field between 20 and 100 mT. Current phenomenological models fail to explain the observed behavior of nuclear polarization. To find an explanation, an adequate theory of spin dynamics should be developed for the nuclear spin system of a quantum dot under conditions of strong quadrupole splitting.  相似文献   

6.
We report a measurement of the spin-echo decay of a single electron spin confined in a semiconductor quantum dot. When we tip the spin in the transverse plane via a magnetic field burst, it dephases in 37 ns due to the Larmor precession around a random effective field from the nuclear spins in the host material. We reverse this dephasing to a large extent via a spin-echo pulse, and find a spin-echo decay time of about 0.5 micros at 70 mT. These results are in the range of theoretical predictions of the electron spin coherence time governed by the electron-nuclear dynamics.  相似文献   

7.
We study the spin dynamics in charged quantum dots in the situation where the resident electron is coupled to only about 200 nuclear spins and where the electron spin splitting induced by the Overhauser field does not exceed markedly the spectral broadening. The formation of a dynamical nuclear polarization as well as its subsequent decay by the dipole-dipole interaction is directly resolved in time. Because not limited by intrinsic nonlinearities, almost complete nuclear polarization is achieved, even at elevated temperatures. The data suggest a nonequilibrium mode of nuclear polarization, distinctly different from the spin temperature concept exploited on bulk semiconductors.  相似文献   

8.
We study, both theoretically and experimentally, driven Rabi oscillations of a single electron spin coupled to a nuclear-spin bath. Because of the long correlation time of the bath, two unusual features are observed in the oscillations. The decay follows a power law, and the oscillations are shifted in phase by a universal value of approximately pi/4. These properties are well understood from a theoretical expression that we derive here in the static limit for the nuclear bath. This improved understanding of the coupled electron-nuclear system is important for future experiments using the electron spin as a qubit.  相似文献   

9.
Manipulation of electron spin is a critical component of many proposed semiconductor spintronic devices. One promising approach utilizes the Rashba effect by which an applied electric field can be used to reduce the spin lifetime or rotate spin orientation through spin–orbit interaction. The large spin–orbit interaction needed for this technique to be effective typically leads to fast spin relaxation through precessional decay, which may severely limit device architectures and functionalities. An exception arises in [1 1 0]-oriented heterostructures where the crystal magnetic field associated with bulk inversion asymmetry lies along the growth direction and in which case spins oriented along the growth direction do not precess. These considerations have led to a recent proposal of a spin-FET that incorporates a [1 1 0]-oriented, gate-controlled InAs quantum well channel. We report measurements of the electron spin lifetime as a function of applied electric field in a [1 1 0]-InAs 2DES. Measurements made using an ultrafast, mid-IR pump-probe technique indicate that the spin lifetime can be reduced from its maximum to minimum value over a range of less than 0.2 V per quantum well at room temperature.  相似文献   

10.
We study the modification of fluoride single crystals after irradiation with femtosecond laser pulses for a range of incident intensities from well below to near damage threshold. The behavior of the desorbed positive ion yields, as analyzed by time-of-flight mass spectrometry, is corroborated with temporal characteristics of radiation induced defects in fluorides. The ion yield evolution upon repetitive irradiation (incubation) exhibits the typical reduction of the multi-shot damage threshold with increasing number of pulses. The experimental data point towards an exponential growth of the transient defect density as the origin of this effect. On the other hand, measurements of the time decay of transient defect fluorescence inside the transparent sample show that the defect lifetime may be even longer than tens of milliseconds. To account for the incubation and the increase of the radiation-target coupling efficiency, a model relating the defect lifetime to a pulse-by-pulse accumulation of transient defects is presented, based on a calculation of the free electron density.  相似文献   

11.
Electron spin qubits in molecular systems offer high reproducibility and the ability to self-assemble into larger architectures. However, interactions between neighboring qubits are "always on," and although the electron spin coherence times can be several hundred microseconds, these are still much shorter than typical times for nuclear spins. Here we implement an electron-nuclear hybrid scheme which uses coherent transfer between electron and nuclear spin degrees of freedom in order to both effectively turn on or off interqubit coupling mediated by dipolar interactions and benefit from the long nuclear spin decoherence times (T(2n)). We transfer qubit states between the electron and (15)N nuclear spin in (15)N@C(60) with a two-way process fidelity of 88%, using a series of tuned microwave and radio frequency pulses and measure a nuclear spin coherence lifetime of over 100 ms.  相似文献   

12.
We describe how the spin coherence time of a localized electron spin in solids, i.e., a solid state spin qubit, can be prolonged by applying designed electron spin resonance pulse sequences. In particular, the spin echo decay due to the spectral diffusion of the electron spin resonance frequency induced by the non-Markovian temporal fluctuations of the nuclear spin flip-flop dynamics can be strongly suppressed using multiple-pulse sequences akin to the Carr-Purcell-Meiboom-Gill pulse sequence in nuclear magnetic resonance. Spin coherence time can be enhanced by factors of 4-10 in GaAs quantum-dot and Si:P quantum computer architectures using composite sequences with an even number of pulses.  相似文献   

13.
We study the decoherence of a single electron spin in an isolated quantum dot induced by hyperfine interaction with nuclei. The decay is caused by the spatial variation of the electron wave function within the dot, leading to a nonuniform hyperfine coupling A. We evaluate the spin correlation function and find that the decay is not exponential but rather power (inverse logarithm) lawlike. For polarized nuclei we find an exact solution and show that the precession amplitude and the decay behavior can be tuned by the magnetic field. The decay time is given by (planck)N/A, where N is the number of nuclei inside the dot, and the amplitude of precession decays to a finite value. We show that there is a striking difference between the decoherence time for a single dot and the dephasing time for an ensemble of dots.  相似文献   

14.
We discuss pulsed electron spin resonance measurements of electrons in Si and determine the spin coherence from the decay of the spin echo signals. Tightly bound donor electrons in isotopically enriched 28Si are found to have exceptionally long spin coherence. Placing the donors near a surface or interface is found to decrease the spin coherence time, but it is still in the range of milliseconds. Unbound two-dimensional electrons have shorter coherence times of a few microseconds, though still long compared to the Zeeman frequency or the typical time to manipulate a spin with microwave pulses. Longer spin coherence is expected in two-dimensional systems patterned into quantum dots, but relatively small dots will be required. Data from dots with a lithographic size of 400 nm do not yet show longer spin coherence.  相似文献   

15.
Silicon is promising for spin-based quantum computation because nuclear spins, a source of magnetic noise, may be eliminated through isotopic enrichment. Long spin decoherence times T2 have been measured in isotope-enriched silicon but come far short of the T2=2T1 limit. The effect of nuclear spins on T2 is well established. However, the effect of background electron spins from ever present residual phosphorus impurities in silicon can also produce significant decoherence. We study spin decoherence decay as a function of donor concentration, 29Si concentration, and temperature using cluster expansion techniques specifically adapted to the problem of a sparse dipolarly coupled electron spin bath. Our results agree with the existing experimental spin echo data in Si:P and establish the importance of background dopants as the ultimate decoherence mechanism in isotope-enriched silicon.  相似文献   

16.
Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.  相似文献   

17.
We investigate low-frequency electron spin dynamics in a quantum Hall system with wire confinement by nuclear spin relaxation measurements. We developed a technique to measure the local nuclear spin relaxation rate T(1)(-1). T(1)(-1) is enhanced on both sides of the local filling factor ν(wire)=1, reflecting low-frequency fluctuations of electron spins associated with Skyrmions inside the wire. As the wire width is decreased, the fast nuclear spin relaxation is suppressed in a certain range of Skyrmion density. This suggests that the multi-Skyrmion state is modified and the low-frequency spin fluctuations are suppressed by the wire confinement.  相似文献   

18.
We measure the dynamics of nuclear spins in a single-electron charged self-assembled InGaAs quantum dot with negligible nuclear spin diffusion due to dipole-dipole interaction and identify two distinct mechanisms responsible for the decay of the Overhauser field. We attribute a temperature-independent decay lasting ~100 sec at 5 T to intradot diffusion induced by hyperfine-mediated indirect nuclear spin interaction. By repeated polarization of the nuclear spins, this diffusion induced partial decay can be suppressed. We also observe a gate voltage and temperature-dependent decay stemming from cotunneling mediated nuclear spin flips that can be prolonged to ~30 h by adjusting the gate voltage and lowering the temperature to ~200 mK. Our measurements indicate possibilities for exploring quantum dynamics of the central spin model.  相似文献   

19.
We present measurements of high statistical significance of the rate of the magnetic octupole (M3 ) decay in nickel-like ions of isotopically pure 129Xe and 132Xe. On 132Xe, an isotope with zero nuclear spin and therefore without hyperfine structure, the lifetime of the metastable level was established as (15.06+/-0.24) ms. On 129Xe, an additional fast (2.7+/-0.1 ms) decay component was established that represents hyperfine mixing with a level that decays by electric quadrupole (E2 ) radiation.  相似文献   

20.
We study the coupling of a single nitrogen-vacancy center in diamond to a nearby single nitrogen defect at room temperature. The magnetic dipolar coupling leads to a splitting in the electron spin resonance frequency of the nitrogen-vacancy center, allowing readout of the state of a single nitrogen electron spin. At magnetic fields where the spin splitting of the two centers is the same, we observe a strong polarization of the nitrogen electron spin. The amount of polarization can be controlled by the optical excitation power. We combine the polarization and the readout in time-resolved pump-probe measurements to determine the spin relaxation time of a single nitrogen electron spin. Finally, we discuss indications for hyperfine-induced polarization of the nitrogen nuclear spin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号