共查询到20条相似文献,搜索用时 78 毫秒
1.
H. L. Frisch S. Maaref Y. Xue G. Beaucage Z. Pu J. E. Mark 《Journal of polymer science. Part A, Polymer chemistry》1996,34(4):673-677
Free radical polymerization of liquid ethylacrylate in the presence of zeolite 13X yielded PIPNs without crosslinker and IPNs if the crosslinker ethylene glycol dimethacrylate was present. We studied these materials both unextracted as well as partially extracted with a variety of solvents using DSC, SEM as well as Small Angle X-ray Scattering (SAXS). These studies suggest that in the composites polyethylacrylate chains entered the internal pores of the zeolite. These chains had an extended state and did not exhibit a bulk glass transition, a similar behavior to that previously reported for polystyrene/zeolite 13X composite. © 1996 John Wiley & Sons, Inc. 相似文献
2.
Harry L. Frisch Yong-peng Xue Shahin Maaref Gregory Beaucage Zhengcai Pu James E. Mark 《Macromolecular Symposia》1996,106(1):147-166
Free-radical polymerization of liquid styrene and ethyl acrylate with or without ethylene dimethacrylate crosslinker in the presence of zeolite 13 X produces interpenetrating polymer networks (IPN's) or pseudo IPN's in which polymer chains have grown and filled internal pores of the zeolite. A variety of methods of characterization including, solubility studies, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), 13C solid-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) provide supporting evidence for this. The polymer chains within the internal pores do not exhibit a bulk glass transition. This is part of a larger study of the glass transition of polymers confined to cavities or pores of various sizes. 相似文献
3.
Aji P. Mathew Gabriel Groeninckx G. H. Michler H. J. Radusch Sabu Thomas 《Journal of Polymer Science.Polymer Physics》2003,41(14):1680-1696
The effects of the blend ratio and initiating system on the viscoelastic properties of nanostructured natural rubber/polystyrene‐based interpenetrating polymer networks (IPNs) were investigated in the temperature range of ?80 to 150 °C. The studies were carried out at different frequencies (100, 50, 10, 1, and 0.1 Hz), and their effects on the damping and storage and loss moduli were analyzed. In all cases, tan δ and the storage and loss moduli showed two distinct transitions corresponding to natural rubber and polystyrene phases, which indicated that the system was not miscible on the molecular level. However, a slight inward shift was observed in the IPNs, with respect to the glass‐transition temperatures (Tg's) of the virgin polymers, showing a certain degree of miscibility or intermixing between the two phases. When the frequency increased from 0.1 to 100 Hz, the Tg values showed a positive shift in all cases. In a comparison of the three initiating systems (dicumyl peroxide, benzoyl peroxide, and azobisisobutyronitrile), the dicumyl peroxide system showed the highest modulus. The morphology of the IPNs was analyzed with transmission electron microscopy. The micrographs indicated that the system was nanostructured. An attempt was made to relate the viscoelastic behavior to the morphology of the IPNs. Various models, such as the series, parallel, Halpin–Tsai, Kerner, Coran, Takayanagi, and Davies models, were used to model the viscoelastic data. The area under the linear loss modulus curve was larger than that obtained by group contribution analysis; this showed that the damping was influenced by the phase morphology, dual‐phase continuity, and crosslinking of the phases. Finally, the homogeneity of the system was further evaluated with Cole–Cole analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1680–1696, 2003 相似文献
4.
Valeria Alzari Daniele Nuvoli Mariano Casu Roberta Sanna Ernesto Rivera Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2013,51(21):4618-4625
Novel polyacrylamide‐based hydrogels containing 3‐(trimethoxysilyl)propyl methacrylate and/or tetraethoxy silane were synthesized by means of frontal polymerization, using ammonium persulfate as initiator, N,N′‐methylene bisacrylamide as crosslinking agent and dimethyl sulfoxide as solvent. The obtained samples were treated at pH of 2 or 5 to induce the sol–gel reaction and evaluate their swelling behavior in the conditions. The occurrence of this reaction was assessed by solid‐state NMR. Moreover, the thermal properties of the dry materials were studied by differential scanning calorimetry and thermal gravimetric analysis, and their water‐contact angles were measured. It was found that the amount of Si affects the extent of swelling and the hydrophilicity of the resulting materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4618–4625 相似文献
5.
The thermal decomposition kinetics of polyurethane/polyethyl acrylate interpenetrating polymer networks (PU/PEA IPN) were studied by means of thermogravimetry and derivative thermogravimetry (TG-DTG), and compared with those of polyurethane (PU) and polyethyl acrylate (PEA). The decomposition temperature (T
i) of PU/PEA IPN was found to be higher thanT
i
of PEA, but lower thanT
i
of PU. Thermal decomposition kinetic parameters,n andE, estimated using Coats-Redfern method, are found for PU/PEA IPN, PU and PEA to be 1.6, 1.9 and 1.1, and 196.6, 258.6 and 139.2 kJ mol–1, respectively. The results show that PU/PEA IPN is neither a simple mixture of PU and PEA nor a copolymer of them. The mechanism of thermal decomposition of PU/PEA IPN is different from those of PU and PEA. The special network in PU/PEA IPN effectually protects weak bonds in the molecular chain of PU and PEA.We express our thanks to Dr. Yaxiong Xie and Zhiyuong Ren for their help in this work, 相似文献
6.
Shin Ichi Kuroda 《中国化学快报》2011,22(12):1505-1508
A series of poly(2-acetoxyethyl methacrylate)/polystyrene(PAEMA/PS) latex interpenetrating polymer networks(LIPNs) were prepared by seeded soap-free emulsion polymerization of styrene on the crosslinked PAEMA seed particles using an oil-soluble initiator.These PAEMA/PS LIPNs showed a well-defined phase-separated structure with PS phase dispersing in continuous PAEMA phase.The domain size of PS phase was found to depend on the crosslinking degree of PAEMA seed particles and the amount of second-stage styrene monomer. 相似文献
7.
A. A. Baidak J. M. Ligeois L. H. Sperling 《Journal of Polymer Science.Polymer Physics》1997,35(12):1973-1984
Simultaneous interpenetrating polymer networks (SINs) based on epoxy/poly(n-butyl acrylate) systems were synthesized at 120°C. The polymerization kinetics were studied both in situ by Fourier Transform Infrared Spectroscopy (FT–IR). Three key events occurred during the polymerization, namely the gelation of the network I, gelation of the network II, and phase separation of one polymer from the other. Thus, metastable phase diagrams describing the relations between the three events were constructed. Three-dimensional tetrahedrons characterizing the four-component system (the two monomers and the two polymers) allow the visualization of these three key events and also define some critical points, for example, the loci of the points where simultaneous gelation of the two networks occurs. The inside of the tetrahedron was also investigated using partially reacted model compounds. These tetrahedrons can be used as guidelines for setting up a synthesis strategy leading to desired morphologies. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1973–1984, 1997 相似文献
8.
Interpenetrating polymer networks (IPNs) are unique alloys of crosslinked polymers. This article reviews the studies on kinetic effects involved in IPN formation. Several investigators have studied the effect of kinetics of curing reactions on the morphology and properties of IPNs. It was found, in general, that the faster the rates of the respective chain extension and crosslinking reactions are and the closer they are to simultaneity, the more homogeneous are the IPNs. Other investigations revealed that the individual components sometimes can polymerize more rapidly in the IPN than alone, due to a “solvent effect” of the IPN. Effects of changing reaction variables, such as NCO/OH ratio, composition activators and temperature were used to study reaction kinetics as well as phase morphology by the Fourier transform infrared technique. Thermochemical techniques have been utilized to study the kinetics of IPN formation which influence phase separation. Small-angle X-ray scattering and small-angle neutron scattering techniques were used to estimate the extent of microheterogeneity of the phase domains in a study of the kinetics of phase separation in the IPNs. 相似文献
9.
Good damping materials should exhibit a high loss factor value over a broad temperature range. Polyurethane and polystyrene are highly immiscible polymers with glass transition regions far apart. The interpenetrating polymer network topology can restrict phase separation and result in materials with a broad transition region. Simultaneous polyurethane/polystyrene interpenetrating polymer networks were synthesized by the one-shot route. Different methods of improving the miscibility of the two polymers were investigated. These included the vanation of the crosslink level in both polymer networks, the controlled introduction of internetwork grafting and the incorporation of compatibilizers into the polystyrene network. Dynamic mechanical thermal analysis indicated that the latter two were successful in achieving a compatibilization of the polymer components. With some materials, a high, broad transition region exhibiting a loss factor > 0.3 over more than 135°C was obtained. The morphology observed via transmission electron microscopy ranged from macrophase separated materials in the lightly crosslinked IPNs to a fine, microheterogeneous morphology in the grafted ones. Modulated differential scanning calorimetry measurements confirmed the trend of the glass transition locations observed with dynamic mechanical thermal analysis. 相似文献
10.
Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks 总被引:3,自引:0,他引:3
Several polyurethane-modified epoxy resins (PU/DGEBA-g-IPNs) were synthesized and characterized through a series tests, including differential scanning calorimetry and mechanical property measurements, such as tensile, Izod, bending and shear strengths were investigated in the study. The PU/DGEBA-g-IPNs and neat DGEBA as matrices for UHMWPE fiber-reinforced and aramid fiber-reinforced composites were prepared for comparison of their mechanical properties. The degree of plasma treatment, the polyurethane content, and the type of polyol in the polyurethane within the matrix of the composite were investigated through mechanical and bulletproof testing. 相似文献
11.
Yasuhiko Iwasaki Keiko Shimakata Nobuyuki Morimoto Kimio Kurita 《Journal of polymer science. Part A, Polymer chemistry》2003,41(1):68-75
To obtain a hydrogel‐like elastic membrane, we prepared semi‐interpenetrating polymer networks (IPNs) by the radical polymerization of methacrylates such as 2‐methacryloyloxyethyl phosphorylcholine (MPC), 2‐hydroxyethylmethacrylate, and triethyleneglycol dimethacrylate diffused into segmented polyurethane (SPU) membranes swollen with a monomer mixture. The values of Young's modulus for the hydrated semi‐IPN membranes were less than that for an SPU membrane because of higher hydration, but they were much higher than that for a hydrated MPC polymer gel (non‐SPU). According to a thermal analysis, the MPC polymer influenced the segment association of SPU. The diffusion coefficient of 8‐anilino‐1‐naphthalenesulfonic acid sodium salt from the semi‐IPN membrane could be controlled with different MPC unit concentrations in the membrane, and it was about 7 × 102 times higher than that of the SPU membrane. Fibroblast cell adhesion on the semi‐IPN membrane was effectively reduced by the MPC units. We concluded that semi‐IPNs composed of the MPC polymer and SPU may be novel polymer materials possessing attractive mechanical, diffusive‐release, and nonbiofouling properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 68–75, 2003 相似文献
12.
13.
Mu-Shih Lin Kuen-Tay Jeng 《Journal of polymer science. Part A, Polymer chemistry》1992,30(9):1941-1951
Poly(ethylene glycol) diacrylate was synthesized from poly(ethylene glycol) of molecular weight 600 with acryloyl chloride in a molar ratio of 1:2. Poly(ethylene glycol) diacrylate (PEGDA) was then blended with diglycidyl ether of bisphenol A (DGEBA) in various ratios, followed by curing with 2,2′-azobisisobutyronitrile (AIBN) and isophronediamine (IPDA) simultaneously. Viscosity changes before and during IPN formation were examined with a Brookfield viscometer. Formation of H-bonding and functional group changes were investigated with FTIR. Exothermic curing thermograms were recorded with dynamic DSC. Optically clear IPNs thus obtained were characterized with rheometric dynamic spectroscopy (RDS) and scanning electron microscopy (SEM) to check possible compatibility of the two networks. Experimental results revealed that during IPN formation hydrogen bonds between PEGDA and DGEBA and interlock of networks had profound effect on viscosity change and pot-life. Complete compatibility of the IPNs was found as DGEBA content was higher than 50% by weight. The compatibility between PEGDA and DGEBA networks was evidenced from inner shift of a single damping peak in RDS. In the meantime, SEM micrographs confirmed the coincidence with the result of RDS © 1992 John Wiley &Sons, Inc. 相似文献
14.
Mariella Rassu Valeria Alzari Daniele Nuvoli Luca Nuvoli Davide Sanna Vanna Sanna Giulio Malucelli Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2017,55(7):1268-1274
In this study, the feasibility of frontal polymerization (FP) as an alternative and convenient technique for the preparation of semi‐interpenetrating polymer networks made of methyl cellulose (MC) and cross‐linked polyacrylamide (PAAm) is demonstrated. FP was performed in water and glycerol, as largely available, nontoxic solvents. Although FP occurred in both media, differences were found by comparing the samples made in the two solvents. In particular, those prepared in water are characterized by larger inhomogeneity and less reproducibility, thus accounting for the boiling effects that influence propagating polymerization fronts when water was used. The effects of the ratio among MC and PAAm, the amount of cross‐linker and solvent medium were studied in terms of influence on temperature and velocity of FP fronts, glass transition temperature (dried samples), swelling behavior, dynamic‐mechanical properties (gels swollen in both water or glycerol), and tensile behavior. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1268–1274 相似文献
15.
James H. O'Donnell Andrew K. Whittaker 《Journal of polymer science. Part A, Polymer chemistry》1992,30(2):185-195
Solid-state 13C NMR spectroscopy has been used to determine the decrease in C?C bonds, formation of crosslinks and cis to trans isomerization during the γ irradiation of (a) > 99% cis, 1,4-polybutadiene, (b) 54% trans, 41% cis, 1,4-polybutadiene, and (c) 86% 1,2-polybutadiene. G(-cis C?C) and G(-trans C?C), were similar and decreased with dose from ≈ 40 for 0-1 MGy to 5 for 5-10 MGy. G(-double bonds) and G(crosslink) were comparable, indicating that crosslinking occurred through the double bonds. G(crosslink) was much higher than values derived from physical properties, confirming that NMR measures the total of inter- and intramolecular crosslinking (cyclization). The 1,2 polybutadiene was much more sensitive to crosslinking, and a value of G(-C?C) = 240 was obtained at low doses. Crosslinking evidently proceeds by a kinetic chain reaction in all three types of polybutadiene. 相似文献
16.
M. Salmern Snchez M. Monlen Pradas J. L. Gmez Ribelles 《Journal of Polymer Science.Polymer Physics》2003,41(14):1713-1721
Thermal transitions of benzene in a hydrophobic polymer network have been explained by us in terms of the phase diagram of the polymer‐solvent system. In this work, we executed a similar study on copolymers and interpenetrating polymer networks (IPNs) with controllable hydrophilic/hydrophobic ratios. Copolymers and IPNs were swollen with different amounts of benzene and subjected to cooling and heating scans with differential scanning calorimetry (DSC). Synthesis of the IPNs was carried out in such a way that phase separation appeared, and three qualitatively different types of DSC thermograms were identified depending on the benzene content of IPN. Thermal transitions of benzene in the hydrophilic/hydrophobic copolymers can also be explained as a consequence of the phase diagram of the system, but an increase in the glass‐transition temperature of the system can be correlated with the interactions among the hydrophilic groups of the copolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1713–1721, 2003 相似文献
17.
Semi- and full-interpenetrating polymer networks (IPNs) based on uralkyd resin (UA)/poly(glycidyl methacrylate) were synthesized in the laboratory by the sequential technique. Infrared spectra of the homopolymers and the IPNs were studied. A study of the mechanical properties viz. tensile strength and elongation percentage was carried out. The apparent densities of the homopolymers and their IPNs were determined and compared. Glass transition studies of the IPNs were conducted with the aid of differential scanning calorimetry (DSC). Phase morphology of the IPNs was observed using scanning electron microscopy (SEM). DSC results revealed a single glass transition temperature (Tg) for both the semi- as well as the full-IPNs suggesting good interpenetration in them. The SEM micrographs as well as the IR-spectra gave an indication that apart form the interpenetration phenomena, grafting reaction between the -NCO groups of UA and the epoxy group of glycidyl methacrylate might have occurred to some extent. 相似文献
18.
Peiguang Zhou H. L. Frisch 《Journal of polymer science. Part A, Polymer chemistry》1992,30(5):887-893
Simultaneous two-component interpenetrating polymer networks (IPN's), pseudo IPN's, and linear blends of urethane-containing aliphatic polycarbonate (PCU) and polystyrene (PS) have been synthesized and characterized. The simultaneous full IPN's of PCU and PS had one Tg only at compositions above 50 wt % PCU, as determined by DSC and DMA. The single phase morphology in the one Tg region was confirmed by transmission electron microscopy (TEM). However, the pseudo IPN's and linear blends of PCU and PS exhibited multiple (melting and glass) transitions by DSC measurements and phase separation was observed by TEM over the whole composition range. The full IPN's exhibited a maximum in ultimate mechanical properties at an intermediate composition. Superior solvent resistance as well as better thermal stability was shown by the IPN's as compared to the pseudo IPN's linear blends, and pure crosslinked components. 相似文献
19.
A series of interpenetrating polymer networks (IPNs) based on styrenic triblock copolymer, polystyrene-b-polybutadiene-b-polystyrene (SBS), and random copolymer of methyl methacrylate (MMA) and n-butyl acrylate (nBA) were prepared. Corresponding semi-IPNs of the same composition without a crosslinking agent were also synthesized for comparison, and toluene was used as a common solvent to investigate the influence of the presence of the common solvent during the IPN synthesis. Throughout the compositions of IPNs tested, SBS appears to form a continuous phase and the domain size decreases gradually with the increase in SBS concentration. IPNs are found to have finer domain sizes than semi-IPNs because of the higher intermixing between polymers. The microstructure of SBS could be observed using highly magnified transmission electron microscopy (TEM). The dynamic mechanical behavior of the IPNs shows the inward shifting of two glass transition peaks, corresponding to polybutadiene phase of SBS and p(MMA–co-nBA) phase respectively, which indicates enhanced intermixing. The increase in loss tangent of styrene blocks of SBS by the addition of common solvent indicates the structural change of the microstructure in SBS, and this structural change can also be confirmed through the observation of the morphology of SBS-rich phase with higher magnification. © 1997 John Wiley & Sons, Ltd. 相似文献