首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction mechanism of the title cluster has been investigated by means of cyclic voltammetry (CV), rotating disk electrode (RDE) voltammetry, and coulometry. The 2-electron reduction proceeds via two routes simultaneously. The first one involves two 1-electron reduction steps, followed by an iodide elimination to form the neutral Pd(3)(dppm)(3)(CO)(0) cluster (EEC mechanism). The second one is a 1-electron reduction process, followed by an iodide elimination, then by a second 1-electron step (ECE mechanism) to generate the same final product. Control over these two competitive mechanisms can be achieved by changing temperature, solvent polarity, iodide concentration, or sweep rate. The reoxidation of the Pd(3)(dppm)(3)(CO)(0) cluster in the presence of iodide proceeds via a pure ECE pathway. The overall results were interpreted with a six-member square scheme, and the cyclic and RDE voltammograms were simulated, in order to extract the reaction rate and equilibrium constants for iodide exchange for all three Pd(3)(dppm)(3)(CO)(I)(n)() (n = +1, 0, -1) adducts.  相似文献   

2.
DNA damage by MoCH3(eta3-allyl)(CO)2(phen) complexes has been shown to occur by two mechanisms: by backbone cleavage via the abstraction of H1' and/or H5' from the deoxyribose moiety and by base modification, resulting in G-specific cleavage via the formation of base-labile residues methylguanine, methoxyguanine, and 8-oxo-G.  相似文献   

3.
The fac-[Re(CO)(3)](+) moiety was reacted with the amino acid serine (D- and L-ser) and with 7-methylguanine (7-MeG), 3-methylpyridine (3-pic) or adenine (ade) to yield novel complexes intended as nucleoside-mimicking compounds. Reaction of [Re(H(2)O)(3)(CO)(3)](+)(1) with L-ser yields the complex [Re(L-ser)(2)(CO)(3)](L-2). X-Ray structure analysis of L-2 reveals that one of the two amino acids is bound to the metal centre in a bidentate fashion while the other amino acid is bound as a zwitterion via the carboxylate oxygen only. Reaction of L-2 and of [Re(D-ser)(2)(CO)(3)](D-2) with 7-MeG yields complexes [Re(L-ser)(7-MeG)(CO)(3)](L-3) and [Re(D-ser)(7-MeG)(CO)(3)](D-3) respectively. Complexes L-3 and D-3 are received as a mixture of diastereomers. If 3-pic is used instead of 7-MeG complex [Re(L-ser)(3-pic)(CO)(3)](L-4) is obtained in good yield, while interaction of L-2 with ade gives a mixture of five distinct species. Crystallization gave one single diastereomer for L-3 and D-3 and the two forms for 4 respectively. X-Ray structure analyses reveal that in all cases the amino acid is bound in a chelate fashion with the base occupying the sixth co-ordination site. When crystals of either 2 or 3 are dissolved in a CD(3)OD/D(2)O mixture (1:1, 293 K) rapid transformation to the diastereomeric mixture is observed. While for L-2 this reorganisation is fast on the NMR time scale even at 193 K, the rate constant for the rearrangement of L-3 and D-3 is 1.36 +/- 0.24 x 10(-2) s(-1) at 293 K.  相似文献   

4.
We present herein the VLS growth of SWNTs from oxo-hexacarboxylate-triron precursors, [Fe(3)O(O(2)CCH(3))(6)(EtOH)(3)] and [Fe(3)O(O(2)CCH(2)OMe)(6)(H(2)O)(3)][FeCl(4)], on spin-on-glass surfaces, using C(2)H(4)/H(2) (750 degrees C) and CH(4)/H(2) (800 and 900 degrees C) growth conditions. The SWNTs have been characterized by AFM, SEM and Raman spectroscopy. The characteristics of the SWNTs are found to be independent of the identity of the precursor complex or the solvent from which it is spin-coated. The as grown SWNTs show a low level of side-wall defects and have an average diameter of 1.2-1.4 nm with a narrow distribution of diameters. At 750 and 800 degrees C the SWNTs are grown with a range of lengths (300 nm-9 microm), but at 900 degrees C only the longer SWNTs are observed (6-8 microm). The yield of SWNTs per unit area of catalyst nanoparticle decreases with the growth temperature. We have demonstrated that spin coating of molecular precursors allows for the formation of catalyst nanoparticles suitable for growth of SWNTs with a high degree of uniformity in the diameter, without the formation of preformed clusters of a set diameter.  相似文献   

5.
Oxidative addition of diorganyl diselenides to the coordinatively unsaturated, low-valent transition-metal-carbonyl fragment [Mn(CO)(5)](-) produced cis-[Mn(CO)(4)(SeR)(2)](-). The complex cis-[PPN][Mn(CO)(4)(SePh)(2)] crystallized in triclinic space group P&onemacr; with a = 10.892(8) ?, b = 10.992(7) ?, c = 27.021(4) ?, alpha = 101.93(4) degrees, beta = 89.79(5) degrees, gamma = 116.94(5) degrees, V = 2807(3) ?(3), and Z = 2; final R = 0.085 and R(w) = 0.094. Thermolytic transformation of cis-[Mn(CO)(4)(SeMe)(2)](-) to [(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)](-) was accomplished in high yield in THF at room temperature. Crystal data for [Na-18-crown-6-ether][(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)]: trigonal space group R&thremacr;, a = 13.533(3) ?, c = 32.292(8) ?, V = 5122(2) ?(3), Z = 6, R = 0.042, R(w) = 0.041. Oxidation of Co(2+) to Co(3+) by diphenyl diselenide in the presence of chelating metallo ligands cis-[Mn(CO)(4)(SePh)(2)](-) and cis-[Mn(CO)(4)(TePh)(2)](-), followed by a bezenselenolate ligand rearranging to bridge two metals and a labile carbonyl shift from Mn to Co, led directly to [(CO)(4)Mn(&mgr;-TePh)(2)Co(CO)(&mgr;-SePh)(3)Mn(CO)(3)]. Crystal data: triclinic space group P&onemacr;, a = 11.712(3) ?, b = 12.197(3) ?, c = 15.754(3) ?, alpha = 83.56(2) degrees, beta = 76.13(2) degrees, gamma = 72.69(2) degrees, V = 2083.8(7) ?(3), Z = 2, R = 0.040, R(w) = 0.040. Addition of fac-[Fe(CO)(3)(SePh)(3)](-) to fac-[Mn(CO)(3)(CH(3)CN)(3)](+) resulted in formation of (CO)(3)Mn(&mgr;-SePh)(3)Fe(CO)(3). This neutral heterometallic complex crystallized in monoclinic space group P2(1)/n with a = 8.707(2) ?, b = 17.413(4) ?, c = 17.541(4) ?, beta = 99.72(2) degrees, V = 2621(1) ?(3), and Z = 4; final R = 0.033 and R(w) = 0.030.  相似文献   

6.
7.
The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (3)MLCT. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi orbital upon excitation are evident by the upward shift of nu(CO) vibrations and a downward shift of the ketone nu(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (3)MLCT excited state is indicated by time-resolved visible and resonance Raman (TR(3)) spectra that show features typical of bopy(*)(-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (3)MLCT excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of nu(C(triple bond)O) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)]PF(6).CH(3)CN has been determined.  相似文献   

8.
Cu(2)SnS(3) nanocrystals with metastable zincblende and wurtzite structures have been successfully synthesized for the first time. Alloyed (ZnS)(x)(Cu(2)SnS(3))(1-x) and (CuInS(2))(x)(Cu(2)SnS(3))(1-x) nanocrystals with arbitrary composition (0 ≤x≤ 1) and ultra-broad tunable band gaps (3.63 to 0.94 eV) were obtained.  相似文献   

9.
Crystals of Pb2(NO2)(NO3)(SeO3) were synthesized by partial reduction of nitrate ions with native copper under hydrothermal conditions. The crystal structure [a=5.529 (2) Å,b=10.357 (3) Å,c=6.811 (2) Å, space group Pmn21,Z=2] was determined from 1 707 independent X-ray data up to sin /=0.81 Å–1 and was refined toR w =0.028. The Pb(1) atom is ten coordinated to O atoms [Pb(1)-O from 2.51 Å to 2.96 Å], the Pb(2) atom has three nearest O atoms [Pb(2)-O=2.41 Å (1 ×) and 2.45 Å (2 ×)] and six next-nearest O atoms [Pb(2)-O from 2.80 Å to 3.22 Å].
Herrn Prof. Dr.K. Komarek zum 60. Geburtstag gewidmet.  相似文献   

10.
C60Ru(OCOCF3)(CO)(PPh3)配合物的合成及性能   总被引:1,自引:0,他引:1  
富勒烯;钌配合物;循环伏安法;C60Ru(OCOCF3)(CO)(PPh3)配合物的合成及性能  相似文献   

11.
The clusters Ru(3)(CO)(10)L(2), where L = PMe(2)Ph or PPh(3), are shown by NMR spectroscopy to exist in solution in at least three isomeric forms, one with both phosphines in the equatorial plane on the same ruthenium center and the others with phosphines in the equatorial plane on different ruthenium centers. Isomer interconversion for Ru(3)(CO)(10)(PMe(2)Ph)(2) is highly solvent dependent, with DeltaH decreasing and DeltaS becoming more negative as the polarity of the solvent increases. The stabilities of the isomers and their rates of interconversion depend on the phosphine ligand. A mechanism that accounts for isomer interchange involving Ru-Ru bond heterolysis is suggested. The products of the reaction of Ru(3)(CO)(10)L(2) with hydrogen have been monitored by NMR spectroscopy via normal and para hydrogen-enhanced methods. Two hydrogen addition products are observed with each containing one bridging and one terminal hydride ligand. EXSY spectroscopy reveals that both intra- and interisomer hydride exchange occurs on the NMR time scale. On the basis of the evidence available, mechanisms for hydride interchange involving Ru-Ru bond heterolysis and CO loss are proposed.  相似文献   

12.
The trifluorido complex mer-[CrF(3)(py)(3)] (py = pyridine) reacts with 1 equiv. of [Ln(hfac)(3)(H(2)O)(2)] and depending on the solvent forms the tetranuclear clusters [Cr(2)Ln(2)(μ-F)(4)(μ-OH)(2)(py)(4)(hfac)(6)], 1Ln, and [Cr(2)Ln(2)(μ-F)(4)F(2)(py)(6)(hfac)(6)], 2Ln, in acetonitrile and 1,2-dichloroethane, respectively (Ln = Y, Gd, Tb, Dy, Ho, and Er; hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone). Reaction with [Dy(hfac)(3)(H(2)O)(2)] in dichloromethane produces the dinuclear cluster [CrDy(μ-F)F(OH(2))(py)(3)(hfac)(4)], 3Dy. All the clusters feature fluoride bridges between the chromium(iii) and lanthanide(iii) centres. Fits of susceptibility data for 1Gd and 2Gd reveal the fluoride-mediated chromium(iii)-lanthanide(iii) exchange interactions to be 0.43(5) cm(-1) and 0.57(7) cm(-1), respectively (in the convention). Heat capacity measurements on 2Gd reveal a moderate magneto-caloric effect (MCE) reaching -ΔS(m)(T) = 11.4 J kg(-1) K(-1) for ΔB(0) = 9 T → 0 T at T = 4.1 K. Out-of-phase alternating-current susceptibility (χ') signals are observed for 1Dy, 2Dy and 2Tb, demonstrating slow relaxation of the magnetization.  相似文献   

13.
The kinetics of oxidative addition of CH3I to [Rh(FcCOCHCOCF3)(CO)(PPh3)], where Fc = ferrocenyl and (FcCOCHCOCF3) = fctfa = ferrocenoylacetonato, have been studied utilizing UV/Vis, IR, 1H and 31P NMR techniques. Three definite sets of reactions involving isomers of at least two distinctly different classes of RhIII-alkyl and two different classes of RhIII-acyl species were observed. Rate constants for this reaction in CHCl3 at 25 °C, applicable to the reaction sequence below, were determined as k1 = 0.00611(1) dm3 mol−1 s−1, k−1 = 0.0005(1) s−1, k3 = 0.00017(2) s−1 and k4 = 0.0000044(1) s−1 while k−3 ? k3 and k−4 ? k4 but both ≠0. The indeterminable equilibrium K2 was fast enough to be maintained during RhI depletion in the first set of reactions and during the RhIIIalkyl2 formation in the second set of reactions. From a 1H and 31P NMR study in CDCl3, Kc1 was found to be 0.68, Kc2 = 2.57, Kc3 = 1.00, Kc4 = 4.56 and Kc5 = 1.65.  相似文献   

14.
The reaction of [AuCl(PR'3)] with KTeR, prepared from RTeTeR and K-selectride, gives the gold-tellurolate clusters [Au8(mu-TeR)8(PR'3)4] (R = Ph, Tol; PR'3 = PPh3, PPh2py) in high yield. This result contrasts with the one obtained from the reaction with thiolates or selenolates, from which mononuclear complexes are synthesized. The structures of these species have been determined and consist on three layers of gold and tellurium atoms in the ratio Au3Te2:Au2Te4:Au3Te2. There are short gold...gold interactions ranging from 2.9463(7) to 3.31132(7) A, and the clusters are composed of di- and tri-coordinated gold centers. The result is unprecedented in gold-chalcogenolate chemistry from which mononuclear species are expected and represents one of the few examples of gold-tellurolate derivatives. These species show an interesting luminescent behavior in the solid state (at 77 K) and in solution (both at 298 and 77 K).  相似文献   

15.
Wang X  Bobbitt DR 《Talanta》2000,53(2):337-345
In situ generated Ru(bpy)(3)(3+)-based chemiluminescence (CL) detection will be shown to be compatible with micellar electrokinetic chromatography (MEKC) providing significant advantages over other Ru(3+) generation protocols. The CL reagent, Ru(bpy)(3)(2+) is continuously added post-capillary to avoid precipitating the anionic surfactant used to enhance the separation of neutral analytes. Ru(bpy)(3)(3+) is then electrochemically generated in situ at the interface between the separation capillary and the working electrode, where it can react with specific analytes, for example amines and amino acids to produce chemiluminescent emission. With this scheme, the critical micelle concentration is not exceeded in the detection zone, freeing the analyte to react with the Ru(bpy)(3)(3+) CL reagent. The separation and detection of various underivatized amines will be demonstrated using this methodology. For triethylamine, 70 000 plates per meter are demonstrated with MEKC providing a limit of detection (S/N=2) of 1.5 fmol of injected mass. The experimental approach used to improve the limit of detection while maintaining high separation efficiency will be evaluated and discussed.  相似文献   

16.
Reaction of Rhenium Trichloride Dinitrosyl with Triphenyl Phosphane. Crystal Structure of [ReCl3(NO) (NPPh3) (OPPh3)] Triphenyl phosphane reacts with ReCl3(NO)2 in dichloro methane solution forming the phosphaneiminato complex [ReCl3(NO)(NPPh3)(OPPh3)], which is characterized by it's i.r. spectrum and by 31P nuclear magnetic resonance. The crystal structure was determined by the aid of X-ray diffraction data (3 133 independent reflexions, R = 3.9%). The complex crystallizes monoclinic in the space group P21/n with four formula units per unit cell. The lattice dimensions are a = 1114, b = 1825, c = 1931 pm, β 96.6°. In the complex the rhenium atom has the coordination number six, the ligands being three chlorine atoms, the linear bonded Nitrosyl group, the O atom of the triphenyl phosphane oxide, which is coordinated trans to the NO ligand, and the N atom of the phosphaneiminato group. The ReN and PN bond lengths of the (NPPh3)? ligand (186 and 163 pm, resp.) indicate double bond character; in contrast to other phosphaneiminato complexes of transition metals with linear array M?N?P, in [ReCl3(NO)(NPPh3)(OPPh3)] the Re? N? P bond angle is only 139°.  相似文献   

17.
The reaction of (Et4N)2[Fe33-Se)(Co)9] with MeAsI2 afforded the [Fe33-Se)(μ3-AsMe)(Co)9] cluster, which was characterized by1H NMR and IR spectroscopy and elemental analysis. The reaction of the resulting compound with the dimeric, complex [η5-CpMo(CO)3#x005D;2 inm-xylene upon refluxing gave the heterometallic cluster Fe2Mo23-Se)(μ3-AsMe)(μ3-Co)(μ-Co)(Co)55-Cp)2, whose structure was established by X-ray diffraction analysis. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 996–998, May, 1999.  相似文献   

18.
The new hybrid inorganic-organic polymer In(2)(OH)(3)[O(4)C(8)H(4)](1.5) has been hydrothermally obtained. Conditions for the synthesis are reported. The crystal structure of this material has been established by single-crystal X-ray diffraction: it is monoclinic, with space group P2(1)/c (Nomicron. 14), a = 6.772(1) A, b = 10.329(2) A, c = 20.152(3) A, beta = 97.573(3) degrees. The In atoms are octahedrally coordinated by three hydroxide groups and three different molecules of carboxylate ligand. The resulting polymeric 3D structure can be envisaged as having been generated from a honeycomb (6,3) 2D that is cross-linked by the BDC organic anions. Data of IR and TGA-DTA studies, as well as the results of reduction of nitroaromatics and selective oxidation of organic sulfide reactions catalyzed by the new material, are reported.  相似文献   

19.
The reaction of [Rh(4)(CO)(9)(mu-CO)(3)] with 3-hexyne to form the butterfly cluster [(mu(4)-eta(2)-3-hexyne)Rh(4)(CO)(8)(mu-CO)(2)] was monitored viain-situ Raman spectroscopy using an NIR laser source, at room temperature and under atmospheric argon using n-hexane as solvent. The collected raw spectra were deconvoluted using band-target entropy minimization (BTEM). The pure component mid-Raman spectra of the [Rh(4)(CO)(9)(mu-CO)(3)] and the butterfly cluster [(mu(4)-eta(2)-3-hexyne)Rh(4)(CO)(8)(mu-CO)(2)], were reconstructed with a high signal-to-noise ratio. Full geometric optimization and Raman vibrational prediction were carried out using DFT. The experimental and predicted Raman spectra were in good agreement. In particular, the far-Raman vibrational modes in the region 100-280 cm(-1) provided characterization of the metal-metal bonds and direct confirmation of the structural integrity of the polynuclear frameworks in solution.  相似文献   

20.
A trinuclear rhenium sulfide cluster complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(3)Cl(6)(PMe(2)Ph)(3)], synthesized from Re(3)S(7)Cl(7), dimethylphenylphosphine, and [(Ph(3)P)(2)N]Cl is readily converted to a bridging SO(2) complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(2)(mu-SO(2))Cl(6)(PMe(2)Ph)(3)], by reaction with O(2). The oxygen atoms on the SO(2) ligand react with phosphines or phosphites to form phosphine oxides or phosphates, and the original cluster complex is recovered. The reaction course has been monitored by (31)P NMR as well as by UV-vis spectroscopy. The catalytic oxygenation of PMePh(2) in the presence of the SO(2) complex shows that turnovers are 8 per hour at 23 degrees C in CDCl(3). The X-ray structures of the cluster complexes are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号