首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) was employed to determine the concentration of rare earth elements (REEs) in plants and soils. Sample preparation and analytical conditions were investigated to set up a simple routine procedure for measuring rare earth elements. For prompt sample decomposition, a microwave digestion technique was successfully used with an acid mixture of HCl+HNO3+HF. Detection limits, reproducibility, accuracy and possible interference were also studied. ICP-MS provided extremely low detection limits for REEs (0.6–6ng/l). Precision was typically better than 6% RSD (relative standard deviation) for soil and 10% for plant. The potential of the method was evaluated by analysis of standard reference materials of soils and plants. A good agreement between the experimental results and certified values was observed. The spectroscopic interference of Ba with Eu and light REEs(LREEs, La-Eu) with heavy REEs(HREEs, Gd-Lu) were eliminated by the algebra correction.

The results suggested that REEs in soil samples existed mainly as light REEs, and the same concentration distribution patterns of Oddo-Hakins law were observed, showing negative gradient from La to Lu concentrations. The REE contents in plants were very low, less than 20μg/g and varied with plant species. Apart from rape leaf(Brassica juncea), the REE distribution patterns in other plant leaves were consistent with soils, indicating that these plants generally absorbed REEs from soil without selectivity. Rape leaf showed selective absorption for LREEs, especially for La. The REE concentration distribution in parts of hot pepper(Capsicum annuum) was characteriaed by root>leaf>stem>fruit. The REEs absorbed by hot pepper concentrated mainly in roots and leaves, very little migrated into fruit. Transfer factors(TFs) of REEs in plants were very low. Although the contents of LREEs were relatively more than those of HREEs, no distinct difference of TFs between LREEs and HREEs was observed, meaning that LREEs and HREEs have the same abilities of transportation. However, for rape leaf, the TFs of LREEs were one or two orders of magnitude higher than those of HREEs.  相似文献   

2.
Seven rare earth elements (La, Ce, Sm, Eu, Tb, Yb and Lu) in marine shell samples were determined by neutron activation analysis. In order to measure γ-ray using a Ge(Li) detector without serious interference from the intense Compton background from24Na, a simple radiochemical separation was performed by a co-precipitation method with hydrated iron(III) oxide. The chemical yields for shell samples (91–99%) were determined by a re-activation technique for Gd and Yb. The interference from the235U(n, fission) reaction was corrected for determination of La and Ce. The data obtained in this study showed the behavior of rare earth elements in shells during the process of fossilization.  相似文献   

3.
A method for continuous determination of the light rare earth elements (LREEs) and thorium in Baotou Iron Ore was established. The light rare earths and thorium were adsorbed on a micro-column packed with HD-8 cation exchange resins. The light rare earth elements were eluted with 4 mol L−1 HCl–2 mol L−1 NH4Cl solution and determined with tribromo-arsenzao by a 721-E spectrophotometry at 630 nm; thorium was eluted with 5% potassium oxalate solution and determined with Arsenazo III by a 721-E spectrophotometry at 660 nm. The measured values by the proposed method were in close agreement with the certified values (Baotou main ore standard sample, Baotou ore R-715 standard sample and GSD-2 standard sample). The RSD of the light rare earths and thorium in Baotou Iron Ore were of <1.70% and <1.99%, respectively.  相似文献   

4.
Results obtained from the analysis of sediment core samples taken froma fairly polluted marine environment were analyzed for the REE contents todetermine the concentrations of La, Ce, Sm, Eu, Tb, Dy and Yb using instrumentalneutron activation analysis. Core samples were divided into strata of between2 to 3 cm intervals and prepared in the powdered form before irradiating themin a neutron flux of about 5.0 . 1012 n . cm —2s —1 in a Triga Mark II reactor. Down-core concentration profilesof La, Ce, Sm, Eu, Tb, Dy and Yb in 3 core sediments from three sites areobtained. The shale-normalized REE pattern from each site was examined andlater used to explain the history of sedimentation by natural processes suchas shoreline erosion and weathering products deposited on the seabed and furnishingsome baseline data and/or pollution trend occurring within the study area.The shale-normalized REE patterns also showed that LREE in the sediment samplesexhibit enrichment relative to HREE particularly, La and Sm showing enrichmentcompared to the ratios in shale. REE concentrations of 124 µg/g at thesurface of sediment collected at two of the three sites were found to decreaseto 58 and 95 µg/g, respectively. This was of particular interest whenit is used to explain the anomalies occurring in the marine sediment as aresult of geochemical processes over a long period of time. Changes in concentrationsfrom surface to bottom of the sediments ratioed to Sm concentrations and thecorrelation between concentrations of Sm and these elements were also investigatedand correlation coefficients were calculated for all REEs and sites. Validationof the method used was done using a Soil-7 SRM.  相似文献   

5.
A study is carried out on the concentrations of rare earth element (REE) elements present in surface mangrove sediments from 10 locations throughout west coast Malaysia. In carrying out the analysis, the best and most convenient method being the instrumental neutron activation analysis (INAA). Samples were obtained, dried, crushed to powdery form and samples prepared for INAA. All the samples for analysis were weighted approximately 150 mg for short irradiation and 200 mg for long irradiation time. As calibration and quality control procedures, blank samples, standard reference material SL-1 were then irradiated with thermal neutron flux of 4 × 1012 cm?2 s?1 at the MINT TRIGA Mark II research reactor which operated at 750 kW by using a pneumatic transport facility. The REE elements of surface sediment samples in this study are Dy, Sm, Eu,Yb, Lu, Tb, La and Ce. It was found that the level of concentrations of all the REE elements varies in the range (0.35–117.4 mg/kg). The geochemical behavior of REEs in surface sediments and normalized pattern (chondrite and shale) has been studied. The degree of sediments contaminations were computed using an enrichment factor. The results showed that the enrichment factor varied in the range (0.75–6.75).  相似文献   

6.
A method with a sensitivity of 2·10−7 to 1·10−10% has been developed for determining Yb, Ho, Dy, Gd, Eu, Sm and La impurities in metallic uranium by means of neutron activation. The method is based on a preliminary chromatographic separation of the total amount of rare earth elements from uranium by passing the solution in sulphuric acid through KU-2 cation exchange resin and eluting the traces of uranium retained by the resin with a solution of ascorbic acid. The rare earth impurities are then eluted from the resin with 4–5N HCl, evaporated, and irradiated for 20 hours with a neutron flux of 1.2·1013 n·cm−2·sec−1. Subsequently the traces of the rare earth elements are co-precipitated with Fe(OH)3, dissolved in concentrated HCl and separated from the iron and other impurities by passing the solution through Dowex 1X8 anion exchange resin in the chloride form. The individual rare earth elements are then separated from each other using KU-2 cation exchange resin and a solution of ammonium α-hydroxyisobutyrate as the eluant.  相似文献   

7.
Epithermal neutron activation analysis (ENAA), followed by high resolution gamma-ray spectrometry, was applied to determine trace amounts of Au in the presence of rare earth elements (REE) from vein samples in the basaltic rocks of Makhtesh Ramon, located in southern Israel. The contribution of152Eu (411.1 KeV) to the 411.8 keV peak of198Au was determined using multiple gamma-peak, ratios derived from Eu standards and mixtures of Au and Eu. The concentration of Au was found to be in the range of 10–80 ppb. A group of rare earth elements: La, Eu, Ce, Tb, Sm, Lu, Yb was identified; the concentration of Eu was found to be 0.5 ppm.  相似文献   

8.
A radiochemical neutron activation analysis using a rare earth group separation scheme has been used to measure ultratrace levels of rare earth elements (REE) in IAEA Human Hair (HH-1), IAEA Animal Bone (H-5), NBS Bovine Liver (SRM 1577), and NBS Orchard Leaf (SRM 1571) standards. The REE concentrations in Human Hair and Animal Bone range from 10–8 g/g to 10–11 g/g and their chondritic normalized REE patterns show a negative Eu anomaly and follow as a smooth function of the REE ionic radii. The REE patterns for NBS Bovine Liver and Orchard Leaf are identical except that their concentrations are higher. The similarity among the REE patterns suggest that the REE do not appear to be fractionated during the intake of biological materials by animals or humans.  相似文献   

9.
Rare earth elements (REE) levels in Havana bay surface sediments are determined by instrumental neutron activation analysis. REE contents follow the order: Ce > La > Nd > Sm > Eu, Yb, Tb, Lu. The results shows that REE content in the bay is site depended and suggest that an REE anthropogenic input into the bay occurred. The chondrite and upper continental crust-normalizations confirm the REE enrichment of the bay sediments, respect to the REE content in sediments from the Cuban northwestern coast.  相似文献   

10.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used to measure the concentration of trace and rare earth elements (REEs) in soils. Geochemical certified reference materials such as JLk-1, JB-1, and JB-3 were used for the validation of the analytical method. The measured values were in good agreement with the certified values for all the elements and were within 10% analytical error. Beach placer deposits of soils mainly from Odisha, on the east coast of India, have been selected to study selected trace and rare earth elements (REEs), to estimate enrichment factor (EF) and geoaccumulation index (Igeo) in the natural environment. Enrichment factor (EF) and geoaccumulation index (Igeo) results showed that Cr, Mn, Fe, Co, Zn, Y, Zr, Cd and U were significantly enriched, and Th was extremely enriched. The total content of REEs (ƩREEs) ranged from 101.3 to 12,911.3 µg g−1, with an average 2431.1 µg g−1 which was higher than the average crustal value of ΣREEs. A high concentration of Th and light REEs were strongly correlated, which confirmed soil enrichment with monazite minerals. High ratios of light REEs (LREEs)/heavy REEs (HREEs) with a strong negative Eu anomaly revealed a felsic origin. The comparison of the chondrite normalized REE patterns of soil with hinterland rocks such as granite, charnockite, khondalite and migmatite suggested that enhancement of trace and REEs are of natural origin.  相似文献   

11.
A novel procedure was developed for the determination of trace cerium on the basis of anodic adsorption voltammetry of the Ce(III)–alizarin complexon (ALC) complex at a carbon paste electrode (CPE). The procedure is convenient to determine cerium individually in the presence of other rare earths because there is a 100 mV difference between the peak potentials of Ce(III)–ALC and other rare earth(III)–ALC complexes in a supporting electrolyte of 0.08 M HAc–NaAc and 0.012 M potassium biphthalate (pH 4.7) when performing linear-scanning from −0.2 to 0.8 V (vs. SCE) at 100 mV/s. The second-order derivative peak currents are directly proportional to the Ce(III) concentration over a range of 6.0 × 10−9–3.0 × 10−7 M. The detection limit is as low as 2.0 × 10−9 M (S/N = 3) for a 120 s preconcentration. An RSD of 3.5% was obtained for 15 determinations of Ce(III) at a concentration of 4.0 × 10−8 M on the same CPE surface. The method was applied successfully to the determination of cerium in samples of rare earth nodular graphite cast iron.  相似文献   

12.
A rare earth group separation scheme followed by normal Ge(Li), low energy photon detector (LEPD), and Ge(Li)−NaI(Tl) coincidence-noncoincidence spectrometry significantly enhances the detection sensitivity of individual rare earth elements (REE) at or below the ppb level. Based on the selected γ-ray energies, normal Ge(Li) counting is favored for140La,170Tb and169Yb; LEPD is favored for low γ-ray energies of147Nd,153Sm,166Ho and169Yb; and noncoincidence counting is favored for141Ce,143Ce,142Pr,153Sm,171Er and175Yb. The detection of radionuclides152mEu,159Gd and177Lu is equally sensitive by normal Ge(Li) and noncoincidence counting;152Eu is equally sensitive by LEPD and normal Ge(Li); and153Gd and170Tm is equally favored by all the counting modes. Overall, noncoincidence counting is favored for most of the REE. Precise measurements of the REE were made in geological and biological standards. Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.  相似文献   

13.
A simple neutron activation method has been developed for the determination of europium in biological tissues and applied in the analysis of marine organism samples with ±9% precision at the nanogram level. The method is based on the separation, by ion-exchange, of the rare earth group from dry or ashed irradiated tissues and subsequent determination of152mEu, by γ-spectrometry using a lithium drifted germanium detector.152mEu, separated almost completely from other than rare earth elements, with better than 98% chemical yield, is counted on the 121.8 keV photopeak which then is practically free from any other γ-ray energy interfering in this counting.  相似文献   

14.
Various rare earth elements (REEs) in standard samples supplied by the IAEA namely mussel (IAEA-142) and lichen (IAEA-336) were examined by ICP-MS and INAA. For ICP-MS, 200 mg each of the samples were dissolved in conc. nitric acid using a microwave sample-preparation system. After repeated concentration-dilution procedures (final volume; 10–20 ml), 1 ml of the sample was supplied for assay. La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb could be detected in the order of magnitude of 10−3 ng/g. Activation analysis carried out using 300 mg of the sample powders failed to detect REEs except La, Ce, Sm and Eu because of a strong interference due mainly to24Na and32P induced in the samples by irradiation. The REE patterns (NASC-normalized) obtained for both the organisms are of the same in their shapes except for all the values for sea animal mussel which are somewhat higher than those for land plant lichen. However, we found a large difference in the other elements contents between the two organisms. For example, Na, Cl, Mg, K, and Ca contents in mussel are about 26, 7, 4.5, 3.5, and 2 times, those in lichen. As the concentrations in the sea water for these elements is from 102 (K and Ca) to 103 (Na, Cl and Mg) order of magnitude higher than in the land water, the result seems reasonable to assume that the higher the concentration of the element around the organisms the higher its content in the organisms.  相似文献   

15.
Representative banded iron-formations (BIFs) from various locations of the eastern Indian geological belt were investigated by instrumental neutron activation analysis (INAA). After pre-concentration, irradiation was carried out using a neutron flux of 5.1·1016 m−2·s−1, 1.0·1015 m−2·s−1 and 3.7·1015 m−2s−1, with thermal, epi-thermal and fast neutrons, respectively. The activities in these samples were measured by a HPGe detector. Ten rare-earth elements, such as La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu, have been qualitatively identified and quantitatively estimated in these samples. The present investigation is an example of employing a pre-concentration method for high iron-containing ores prior to neutron activation analysis.  相似文献   

16.
Moalla SM 《Talanta》1997,45(1):213-221
The distribution of major, trace and rare earth elements in bulk, different particle sized and strongly magnetic fractions of Lake Nasser sediments has been investigated. The elements were determined using neutron activation analysis. Statistical data processing indicates good correlation between Th, La and Ce, suggesting that accessory minerals such as monazite may play a role in controlling rare earth elements (REE) in the lake sediments. The highly significant relationship between Al and light-REE accounts for the capability of clay minerals to host these elements. In addition, principle components analysis reflects that there are only four factors which could explain about 90% of the total variance in the lake sediments. The results show also that Al, Th and REE have low contents in the sediment magnetic fraction relative to the corresponding values in the bulk sediments, whereas Fe, Mn, Ti, Co, Cr, Hf, V and Zn have higher concentrations in the same fraction than the corresponding values in the bulk sediments. This may be attributed to their incorporation in Fe-Mn minerals.  相似文献   

17.
Separation by means of supported liquid membranes is a useful method for the preparation and preconcentration of radioactive nuclides. The permeation of rare earth elements through a bis(2-ethylhexyl) hydrogen phosphate-decalin membrane supported on a microporous polytetrafluoroethylene sheet was studied using a multitracer containing radioactive nuclides of Sc, Zr, Nb, Hf, Ce, Pm, Gd, Yb, and Lu. Permeation rates of these elements from feed solutions of various acidity to receiving solutions of 0.5 mol·dm−3 HCl were determined simultaneously. The feed solution at pH 1.4 gave the highest permeation rate for Ce, Pm, and Gd, amounting to about 95% of permeation for Ce and Pm, 80% for Gd, and 10% for Yb in 21 h. Scandium, Zr, Nb, Hf, and Lu were not transported at all from the feed solution. Permeation rates of Yb and Lu from the feed solution at pH 1.4 to receiving solutions of 0.75, 1.0, 2.3, and 4.0 mol·dm−3 HCl increased with the concentration. The results obtained indicate that the light rare earth elements can be separated from the heavy ones by this method.  相似文献   

18.
In geochemistry, the distribution of the Rare Earth Elements (REEs) in earth crust and mantle allows to understand geochemical cycles and origin and age of igneous rocks. In this article REEs (Ce, Dy, Eu, La, Nd, Sm, Tb, and Yb), Th and U in ores of the North-Latium (Bracciano area, Ceriti Mt., Fate Mt., Sabatini Mt., Vulsini Mt., Acqua Rossa basin), have been investigated for evaluating the extraction feasibility for industrial applications. 107 samples were irradiated in the rotating rack of the TRIGA Mark II reactor of the R.C. Casaccia (ENEA) at neutron flux of 2.6 × 1012 n × cm−2 × s−1 for 12 h together with primary and secondary standards. The gamma spectrometry measurements were performed after 8 h, 3 and 30 days of decay by means of HPGe detector (FWHM 1.75 keV at 1332.5 keV, peak/Compton ratio 55.1, relative efficiency of 22%) connected to a multi-channel analyzer. The total REE mean content is 105 μg g−1, ranging widely between 2.23 and 410.5 μg g−1 (average coefficient of variation 112%). A similar behavior is found for Th and U: their average levels are 13.5 and 6.0 μg g−1, respectively. A quite good correlation between REEs and Th (and U) is found for Ceriti Mt. (r 2 > 0.8) whereas for the other areas the correlation is <0.7. The results obtained evidence the low U content in the investigated locations.  相似文献   

19.
The extraction distribution and separation of rare earth elements and americium from the concentrated lithium nitrate solution with solutions of tertiary amines in organic solvents has been studied as a function of the composition and structure of complexones of the polyaminepolyacetic acid series by a radioactive tracer method. It has been found that diethylenetriaminepentaacetic acid is suitable for the separation of REE from americium(III). The apparent stability constants for the lanthanide complexes with EDTA and DTPA in concentrated litium nitrate solutions have been obtained by extraction, pH-metric titration and solubility. Using these constants, the optimum conditions of separation have been found and the separation factors of REE calculated. The calculated and experimental values are in good agreement. The optimum conditions for the separation of americium(III) from REE in a wide range of lanthanide and complexone concentrations (10−1–10−6 M) have been determined.  相似文献   

20.
湖南辰溪特高有机硫煤的稀土元素特征及其成因   总被引:1,自引:0,他引:1  
采用高分辨率电感耦合等离子质谱(HR-ICP-MS)技术测定辰溪晚二叠世高有机硫(7.75%)煤中的稀土元素(REEs)。辰溪煤中∑REE变化较大,从38.84 μg/g至305.85 μg/g,加权平均值为104.57 μg/g,高于世界煤均值,与中国煤相近。辰溪煤中有明显的Ce负异常(δCe=0.74~0.84)和Eu的负异常(δEu=0.55~0.69)。煤层剖面上稀土元素含量和分布模式的变化反映了成煤环境的波动,从底板到顶板陆源物质的影响减弱,而海水的影响增强。沉积环境的阶段性变化是导致剖面上下有机硫与黄铁矿硫比值相差悬殊的原因。辰溪煤中稀土元素与铁呈现了显著的正相关性(n=11,r=0.95),说明其物质来源和富集条件有一定相似性,即陆源物质和海水共同影响的结果。稀土元素的分布模式以及∑REE与灰分、Si、Al的相关性说明了其主要来源于陆源物质;辰溪煤中δCe与δEu在剖面上变化很小,说明海水对煤中的稀土元素存在重新改造的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号