首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Si?F bond cleavage of fluoro‐silanes was achieved by transition‐metal complexes under mild and neutral conditions. The Iridium‐hydride complex [Ir(H)(CO)(PPh3)3] was found to readily break the Si?F bond of the diphosphine‐ difluorosilane {(o‐Ph2P)C6H4}2Si(F)2 to afford a silyl complex [{[o‐(iPh2P)C6H4]2(F)Si}Ir(CO)(PPh3)] and HF. Density functional theory calculations disclose a reaction mechanism in which a hypervalent silicon species with a dative Ir→Si interaction plays a crucial role. The Ir→Si interaction changes the character of the H on the Ir from hydridic to protic, and makes the F on Si more anionic, leading to the formation of Hδ+???Fδ? interaction. Then the Si?F and Ir?H bonds are readily broken to afford the silyl complex and HF through σ‐bond metathesis. Furthermore, the analogous rhodium complex [Rh(H)(CO)(PPh3)3] was found to promote the cleavage of the Si?F bond of the triphosphine‐monofluorosilane {(o‐Ph2P)C6H4}3Si(F) even at ambient temperature.  相似文献   

2.
A urea‐containing, (Ph2P(R)PPh2)‐bridged, dinuclear, gold(I) thiolate complex, [Au2{Ph2PN(C6H4OMe‐4)PPh2}(SC6H4NHCONHC6H5)2] ( 1 ) was designed and synthesized and its photophysical and anion recognition properties studied. The results show that 1 has a high selectivity toward F?. Upon addition of F?, the yellow solution was decolorized, and drastic changes of emission and 1H and 31P{1H} NMR signals were observed. Interestingly, these changes are attributed to fluoride‐assisted P?N bond hydrolysis, instead of the expected hydrogen‐bonding interactions with the urea receptor. Similar changes were observed for two other basic anions, AcO? and H2PO4?, but to a much lesser extent; and these anions were found to bind to the urea receptor at the same time. On the other hand, Cl? was found to only bind to the urea moiety through hydrogen‐bonding interactions. Further studies with the control complex [Au2{Ph2PN(C6H4OMe‐4)PPh2}Cl2] ( 2 ) indicate that F? assists the hydrolysis process via cleavage of the P?N bond. DFT calculations were performed to study the reaction mechanism for the fluoride‐assisted P?N bond hydrolysis of 2 ; these provide a better insight into the role of fluoride in the hydrolysis.  相似文献   

3.
Interconversion of the molybdenum amido [(PhTpy)(PPh2Me)2Mo(NHtBuAr)][BArF24] (PhTpy=4′‐Ph‐2,2′,6′,2“‐terpyridine; tBuAr=4‐tert‐butyl‐C6H4; ArF24=(C6H3‐3,5‐(CF3)2)4) and imido [(PhTpy)(PPh2Me)2Mo(NtBuAr)][BArF24] complexes has been accomplished by proton‐coupled electron transfer. The 2,4,6‐tri‐tert‐butylphenoxyl radical was used as an oxidant and the non‐classical ammine complex [(PhTpy)(PPh2Me)2Mo(NH3)][BArF24] as the reductant. The N?H bond dissociation free energy (BDFE) of the amido N?H bond formed and cleaved in the sequence was experimentally bracketed between 45.8 and 52.3 kcal mol?1, in agreement with a DFT‐computed value of 48 kcal mol?1. The N?H BDFE in combination with electrochemical data eliminate proton transfer as the first step in the N?H bond‐forming sequence and favor initial electron transfer or concerted pathways.  相似文献   

4.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

5.
Aminophosphonium salts [Ph3PN(H)R]BPh4 ( 1 ) [R = C6H5CH2 ( 1a ), 4‐CH3C6H4CH2 ( 1b ), C6H5 ( 1c )] were obtained by allowing hydride IrHCl2(PPh3)2{P(OEt)3} to react first with triflic acid and then with the organic azide RN3. The compounds were characterized spectroscopically and by X‐ray crystal structure determination of [Ph3PN(H)CH2C6H4‐4‐CH3]BPh4 ( 1b ). A reaction path for the formation of aminophosphonium cations is also proposed.  相似文献   

6.
A novel, water‐soluble Rh complex, (nbd)Rh[PPh2(m‐NaOSO2C6H4)] [C(Ph)?CPh2] ( 1 ) was synthesized by the reaction of [(nbd)RhCl]2, Ph2P(m‐NaOSO2C6H4) and Ph2C?C(Ph)Li, whose structure was determined by NMR and IR spectroscopies. The Rh catalyst 1 induced the polymerization of phenylacetylene (PA) in water to give two kinds of polymers; one was soluble in organic solvents such as tetrahydrofuran (THF) and CHCl3, and the other was insoluble in common organic solvents. The polymerization of sodium p‐ethynylbenzoate (p‐NaOCO‐PA) homogeneously proceeded with 1 in water at 60 °C to give the polymer in high yield. Poly(p‐NaOCO‐PA) was treated with 1 N HCl and then reacted with (CH3)3SiCHN2 to obtain poly(p‐MeOCO‐PA). The methyl‐esterified polymer was insoluble in THF and CHCl3, which suggests that the formed poly(p‐MeOCO‐PA) has cis–cisoidal structure. The polymer obtained from the polymerization of [p‐CH3(OCH2CH2)2O2CC6H4]C?CH with 1 in water was soluble in methanol, ethanol, and THF, and partly soluble in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2100–2105, 2004  相似文献   

7.
The new symmetrical diphosphonium salt [Ph2P(CH2)2PPh2(CH2C(O)C6H4Br)2] Br2 ( S ) was synthesized in the reaction of 1,2‐bis (diphenylphosphino) ethane (dppe) and related ketone. Further treatment with NEt3 gave the symmetrical α‐keto stabilized diphosphine ylide [Ph2P(CH2)2PPh2(CHC(O)C6H4Br)2] ( Y 1 ). The unsymmetrical α‐keto stabilized diphosphine ylide [Ph2P(CH2)2PPh2(CHC(O)C6H4Br)] ( Y 2 ) was synthesized in the reaction of diphosphine in 1:1 ratio with 2.3′‐dibromoacetophenone, then treatment with NEt3. The reaction of dibromo (1,5‐cyclooctadiene)palladium (II), [PdBr2(COD)] with this ligand ( Y 1 ) in equimolar ratio gave the new C,C‐chelated [PdBr2(Ph2P(CH2)2PPh2(C(H)C(O)C6H4Br)2)] ( 1 ) and with unsymmetrical phosphorus ylide [Ph2P(CH2)2PPh2C(H)C(O)C6H4Br] ( Y 2 ) gave the new P, C‐chelated palladacycle complex [PdBr2(Ph2P(CH2)2PPh2C(H)C(O)Br)] ( 2 ). These compounds were characterized successfully by FT‐IR, NMR (1H, 13C and 31P) spectroscopic methods and the crystal structure of Y 1 and 2 were elucidated by single crystal X‐ray diffraction. The results indicated that the complex 1 was C, C‐chelated whereas complex 2 was P, C‐chelated. These air/moisture stable complexes were employed as efficient catalysts for the Mizoroki‐Heck cross‐coupling reaction of several aryl chlorides, and the Taguchi method was used to optimize the yield of Mizoroki‐Heck coupling. The optimum condition was found to be as followed: base; K2CO3, solvent; DMF and loading of catalyst; 0.005 mmol.  相似文献   

8.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
With the intent to demonstrate that the charge of Z‐type ligands can be used to modulate the electrophilic character and catalytic properties of coordinated transition metals, we are now targeting complexes bearing polycationic antimony‐based Z‐type ligands. Toward this end, the dangling phosphine arm of ((o‐(Ph2P)C6H4)3)SbCl2AuCl ( 1 ) was oxidized with hydrogen peroxide to afford [((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuCl2]+ ([ 2 a ]+) which was readily converted into the dicationic complex [((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuCl]2+ ([ 3 ]2+) by treatment with 2 equiv AgNTf2. Both experimental and computational results show that [ 3 ]2+ possess a strong Au→Sb interaction reinforced by the dicationic character of the antimony center. The gold‐bound chloride anion of [ 3 ]2+ is rather inert and necessitates the addition of excess AgNTf2 to undergo activation. The activated complex, referred to as [ 4 ]2+ [((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuNTf2]2+ readily catalyzes both the polymerization and the hydroamination of styrene. This atypical reactivity underscores the strong σ‐accepting properties of the dicationic antimony ligand and its activating impact on the gold center.  相似文献   

10.
The reaction of [CpRuCl(PPh3)2] (Cp=cyclopentadienyl) and [CpRuCl(dppe)] (dppe=Ph2PCH2CH2PPh2) with bis‐ and tris‐phosphine ligands 1,4‐(Ph2PC≡C)2C6H4 ( 1 ) and 1,3,5‐(Ph2PC≡C)3C6H3 ( 2 ), prepared by Ni‐catalysed cross‐coupling reactions between terminal alkynes and diphenylchlorophosphine, has been investigated. Using metal‐directed self‐assembly methodologies, two linear bimetallic complexes, [{CpRuCl(PPh3)}2(μ‐dppab)] ( 3 ) and [{CpRu(dppe)}2(μ‐dppab)](PF6)2 ( 4 ), and the mononuclear complex [CpRuCl(PPh3)(η1‐dppab)] ( 6 ), which contains a “dangling arm” ligand, were prepared (dppab=1,4‐bis[(diphenylphosphino)ethynyl]benzene). Moreover, by using the triphosphine 1,3,5‐tris[(diphenylphosphino)ethynyl]benzene (tppab), the trimetallic [{CpRuCl(PPh3)}33‐tppab)] ( 5 ) species was synthesised, which is the first example of a chiral‐at‐ruthenium complex containing three different stereogenic centres. Besides these open‐chain complexes, the neutral cyclic species [{CpRuCl(μ‐dppab)}2] ( 7 ) was also obtained under different experimental conditions. The coordination chemistry of such systems towards supramolecular assemblies was tested by reaction of the bimetallic precursor 3 with additional equivalents of ligand 2 . Two rigid macrocycles based on cis coordination of dppab to [CpRu(PPh3)] were obtained, that is, the dinuclear complex [{CpRu(PPh3)(μ‐dppab)}2](PF6)2 ( 8 ) and the tetranuclear square [{CpRu(PPh3)(μ‐dppab)}4](PF6)4 ( 9 ). The solid‐state structures of 7 and 8 have been determined by X‐ray diffraction analysis and show a different arrangement of the two parallel dppab ligands. All compounds were characterised by various methods including ESIMS, electrochemistry and by X‐band ESR spectroscopy in the case of the electrogenerated paramagnetic species.  相似文献   

11.
The aminophosphane ligand 1‐amino‐2‐(diphenylphosphanyl)ethane [Ph2P(CH2)2NH2] reacts with dichloridotris(triphenylphosphane)ruthenium(II), [RuCl2(PPh3)3], to form chloridobis[2‐(diphenylphosphanyl)ethanamine‐κ2P,N](triphenylphosphane‐κP)ruthenium(II) chloride toluene monosolvate, [RuCl(C18H15P)(C14H16NP)2]Cl·C7H8 or [RuCl(PPh3){Ph2P(CH2)2NH2}2]Cl·C7H8. The asymmetric unit of the monoclinic unit cell contains two molecules of the RuII cation, two chloride anions and two toluene molecules. The RuII cation is octahedrally coordinated by two chelating Ph2P(CH2)2NH2 ligands, a triphenylphosphane (PPh3) ligand and a chloride ligand. The three P atoms are meridionally coordinated, with the Ph2P– groups from the ligands being trans. The two –NH2 groups are cis, as are the chloride and PPh3 ligands. This chiral stereochemistry of the [RuCl(PPh3){Ph2P(CH2)2NH2}2]+ cation is unique in ruthenium–aminophosphane chemistry.  相似文献   

12.
The o‐substituted hybrid phenylphosphines, PPh2(o‐C6H4NH2) and PPh2(o‐C6H4OH), could be deprotonated with LDA or n‐BuLi to yield PPh2(o‐C6H4NHLi) and PPh2(o‐C6H4OLi), respectively. When added to a solution of (η5‐C5H5)Fe(CO)2I at room temperature, these two lithiated reagents produce a chelated neutral complex 1 (η5‐C5H5)Fe(CO)[C(O)NH(o‐C6H4)PPh2C,P‐η2] for the former and mainly a zwitterionic complex 2 , (η5‐C5H5)Fe+(CO)2[PPh2(o‐C6H4O?)] for the latter. Complex 1 could easily be protonated and then decarbonylated to give 4 [(η5‐C5H5)Fe(CO){NH2(o‐C6H4)PPh2N,P‐η2}+]. Complexes 1 and 4‐I have been crystallographically characterized with X‐ray diffraction.  相似文献   

13.
The structural study of Sc complexes containing dianions of anthracene and tetraphenylethylene should shed some light on the nature of rare‐earth metal–carbon bonding. The crystal structures of (18‐crown‐6)bis(tetrahydrofuran‐κO)sodium bis(η6‐1,1,2,2‐tetraphenylethenediyl)scandium(III) tetrahydrofuran disolvate, [Na(C4H8O)2(C12H24O6)][Sc(C26H20)2]·2C4H8O or [Na(18‐crown‐6)(THF)2][Sc(η6‐C2Ph4)2]·2(THF), ( 1b ), (η5‐1,3‐diphenylcyclopentadienyl)(tetrahydrofuran‐κO)(η6‐1,1,2,2‐tetraphenylethenediyl)scandium(III) toluene hemisolvate, [Sc(C17H13)(C26H20)(C4H8O)]·0.5C7H8 or [(η5‐1,3‐Ph2C5H3)Sc(η6‐C2Ph4)(THF)]·0.5(toluene), ( 5b ), poly[[(μ2‐η33‐anthracenediyl)bis(η6‐anthracenediyl)bis(η5‐1,3‐diphenylcyclopentadienyl)tetrakis(tetrahydrofuran)dipotassiumdiscandium(III)] tetrahydrofuran monosolvate], {[K2Sc2(C14H10)3(C17H13)2(C4H8O)4]·C4H8O}n or [K(THF)2]2[(1,3‐Ph2C5H3)2Sc2(C14H10)3]·THF, ( 6 ), and 1,4‐diphenylcyclopenta‐1,3‐diene, C17H14, ( 3a ), have been established. The [Sc(η6‐C2Ph4)2] complex anion in ( 1b ) contains the tetraphenylethylene dianion in a symmetrical bis‐η3‐allyl coordination mode. The complex homoleptic [Sc(η6‐C2Ph4)2] anion retains its structure in THF solution, displaying hindered rotation of the coordinated phenyl rings. The 1D 1H and 13C{1H}, and 2D COSY 1H–1H and 13C–1H NMR data are presented for M[Sc(Ph4C2)2xTHF [M = Na and x = 4 for ( 1a ); M = K and x = 3.5 for ( 2a )] in THF‐d8 media. Complex ( 5b ) exhibits an unsymmetrical bis‐η3‐allyl coordination mode of the dianion, but this changes to a η4 coordination mode for (1,3‐Ph2C5H3)Sc(Ph4C2)(THF)2, ( 5a ), in THF‐d8 solution. A 45Sc NMR study of ( 2a ) and UV–Vis studies of ( 1a ), ( 2a ) and ( 5a ) indicate a significant covalent contribution to the Sc—Ph4C2 bond character. The unique Sc ate complex, ( 6 ), contains three anthracenide dianions demonstrating both a η6‐coordination mode for two bent ligands and a μ2‐η33‐bridging mode of a flat ligand. Each [(1,3‐Ph2C5H3)2Sc2(C14H10)3]2− dianionic unit is connected to four neighbouring units via short contacts with [K(THF)2]+ cations, forming a two‐dimensional coordination polymer framework parallel to (001).  相似文献   

14.
A large cationic triangular metallo‐prism, [Ru6(p‐PriC6H4Me)6(tpt)2(dhbq)3]6+ ( 1 )6+, incorporating p‐cymene ruthenium building blocks, bridged by 2,5‐dihydroxy‐1,4‐benzoquinonato (dhbq) ligands, and connected by two 2,4,6‐tri(pyridin‐4‐yl)‐1,3,5‐triazine (tpt) subunits, allows the permanent encapsulation of the triphenylene derivatives hexahydroxytriphenylene, C18H6(OH)6 and hexamethoxytriphenylene, C18H6(OMe)6. These two cationic carceplex systems [C18H6(OH)6⊂ 1 ]6+ and [C18H6(OMe)6⊂ 1 ]6+ have been isolated as their triflate salts. The molecular structure of these systems has been established by one‐dimensional 1H ROESY NMR experiments as well as by the single‐crystal structure analysis of [C18H6(OMe)6⊂ 1 ][O3SCF3]6.  相似文献   

15.
The syntheses and molecular structures, as determined by single‐crystal X‐ray diffraction analysis, of the first intramolecularly [4+2]‐coordinated tetraorganolead compound {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPh3 ( 2 ) and the triphenyllead chloride adduct of the first intramolecularly coordinated benzoxaphosphaplumbole {[1(Pb), 3(P)‐Pb(Ph)2OP(O)(OEt)‐5‐t‐Bu‐7‐P(O)(OEt)2]C6H2·Ph3PbCl} ( 3a ) are reported. The reaction of 2 with [Ph3C]+ [PF6] and p‐MeC6H4SO3H, respectively, provides the triorganolead salts {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPh2+X ( 4 , X = PF6; 4a , X = p‐MeC6H4SO3). Reaction of 2 with bromine and hydrogen chloride, respectively, gives the diorganolead dihalides {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPhX2 ( 5 , X = Br; 6 , X = Cl).  相似文献   

16.
The reaction of the pyridyl-bridged binuclear complex [PdBr(μ-2-C5H4N)(PPh3)]2 with isocyynides CNR (R  p-C6H4OMe, Me, C6H11) yields the complex PdBr{(&2.dbnd;NR)C(&2.dbnd;NR) (2-C5H4N)}(PPh3)] containing a C,N-chelated 1,2-bis(imino)-2-(2-pyridyl)ethyl group, which results from successive insertions of two isocyanides molecules into the palladium2-pyridyl bond. The mononuclear compound trans-[PdBr(2-C5H4N)(PMePh2)2] readily reacts with various CNR ligands (R  p-C6H4OMe, Me, C6H11, CMe3) to give the imino(2-pyridyl)methylpalladium(II) derivatives, trans-[Pdbr{C(=NR)(2-C5H4N)} (PMePh2)2].  相似文献   

17.
A series of palladium complexes ( 2a–2g ) ( 2a : [6‐tBu‐2‐PPh2‐C6H3O]PdMe(Py); 2b : [6‐C6F5–2‐PPh2‐C6H3O]PdMe(Py); 2c : [6‐tBu‐2‐PPhtBu‐C6H3O]PdMe(Py); 2d : [2‐PPhtBu‐C6H4O] PdMe(Py); 2e : [6‐SiMe3–2‐PPh2‐C6H3O]PdMe(Py); 2f : [2‐tBu‐6‐(Ph2P=O)‐C6H3O]PdMe(Py); 2g : [6‐SiMe3–2‐(Ph2P=O)‐C6H3S]PdMe(Py)) bearing phosphine (oxide)‐(thio) phenolate ligand have been efficiently synthesized and characterized. The solid‐state structures of complexes 2d , 2f and 2g have been further confirmed by single‐crystal X‐ray diffraction, which revealed a square‐planar geometry of palladium center. In the presence of B(C6F5)3, these complexes can be used as catalysts to polymerize norbornene (NB) with relatively high yields, producing vinyl‐addition polymers. Interestingly, 2a /B(C6F5)3 system catalyzed the polymerization of NB in living polymerization manner at high temperature (polydispersity index 1.07, Mn up to 1.5 × 104). The co‐polymerization of NB and polar monomers was also studied using catalysts 2a and 2f . All the obtained co‐polymers could dissolve in common solvent.  相似文献   

18.
Treatment of the osmabenzene [Os{CHC(PPh3)CHC(PPh3)CH} Cl2(PPh3)2]Cl ( 1 ) with excess 8‐hydroxyquinoline produces monosubstituted osmabenzene [Os{CH C(PPh3) CHC(PPh3)CH}(C9H6NO)Cl(PPh3)]Cl ( 2 ) or disubstituted osmabenzene [Os{CHC(PPh3)CHC(PPh3)CH} (C9H6NO)2]Cl ( 3 ) under different reaction conditions. Osmabenzene 2 evolves into cyclic η2‐allene‐coordinated complex [Os{CH?C(PPh3)CH=(η2‐C?CH2)}(C9H6NO)(PPh3)2]Cl ( 4 ) in the presence of excess PPh3 and NaOH, presumably involving a P? C bond cleavage of the metallacycle. Reaction of 4 with excess 8‐hydroxyquinoline under air affords the SNAr product [(C9H6NO)Os{CHC(PPh3)CHCHC} (C9H6NO)(PPh3)]Cl ( 5 ). Complex 4 is fairly reactive to a nucleophile in the presence of acid, which could react with water to give carbonyl complex [Os{CH?C(PPh3)CH?CH2}(C9H6NO) (CO)(PPh3)2]Cl ( 6 ). Complex 4 also reacts with PPh3 in the presence of acid and results in a transformation to [Os {CHC(PPh3)CHCHC}(C9H6NO)Cl (PPh3)2]Cl ( 7 ) and [Os{CH?C(PPh3) CH=(η2‐C?CH(PPh3))}(C9H6NO) Cl(PPh3)]Cl ( 8 ). Further investigation shows that the ratio of 7 and 8 is highly dependent on the amount of the acid in the reaction.  相似文献   

19.
The phosphines L1PPh2 (1) and L2PPh2 (2) containing different Y,C,Y‐chelating ligands, L1 = 2,6‐(tBuOCH2)2C6H3? and L2 = 2,6‐(Me2NCH2)2C6H3?, were treated with PdCl2 and di‐µ‐chloro‐bis[2‐[(N,N‐dimethylamino)methyl]phenyl‐C,N]‐dipalladium(II) and yielded complexes trans‐{[2,6‐(tBuOCH2)2C6H3]PPh2}2PdCl2 (3), {[2,6‐(Me2NCH2)2C6H3]PPh2} PdCl2 (4), {[2,6‐(tBuOCH2)2C6H3]PPh2}Pd(Cl)[2‐(Me2NCH2)C6H4] (5) and {[2,6‐(Me2NCH2)2C6H3]PPh2}Pd(Cl)[2‐(Me2NCH2)C6H4] (6) as the result of different ability of starting phosphines 1 and 2 to complex PdCl2. Compounds 3–6 were characterized by 1H, 13C, 31P NMR spectroscopy and ESI‐MS. The molecular structures of 3,4 and 6 were also determined by X‐ray diffraction analysis. The catalytic activity of complexes 3–6 was evaluated in the Suzuki‐Miyaura cross‐coupling reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Five new copper chalcogenide cluster molecules, [Cu4(S–C6H4–Br)4(PPh3)4] ( 1 ), [Cu22Se6(S–C6H4–Br)10(PPh3)8] ( 2 ), [Cu28Se6(S–C6H4–Br)16(PPh3)8] ( 3 ), [Cu47Se10(S–C6H4–Br)21(OAc)6(PPh3)8] ( 4 ) and [Cu8(S–C6H4–Br)6(S2C–NMe2)2(PPh3)4] ( 5 ) have been synthesized and characterized by single‐crystal X‐ray structure analysis. Compounds 1 – 4 were prepared from the reaction of CuOAc, p‐Br–C6H4–SSiMe3 and Se(SiMe3)2 in the presence of PPh3. In a further reaction of 1 with iPrMgCl and (Me2N–CS2)2 cluster 5 was crystallized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号