首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
陈东海  杨谋  段后建  王瑞强 《物理学报》2015,64(9):97201-097201
本文研究了自旋轨道耦合作用下石墨烯纳米带pn结的电子输运性质. 当粒子的入射能量处于pn结两端势能之间时, 粒子将会以隧穿的形式通过石墨烯pn结, 同时伴随着电子空穴转换. 电导随费米能的变化曲线呈不等高阶梯状, 并在费米能位于pn结两端能量中点时取得最大值. 随着石墨烯pn结长度的增加, 电导以指数形式衰减. 自旋轨道耦合作用导致的能隙会使电导显著减小, 而边缘态的粒子则可以几乎毫无阻碍地通过pn结. 本文用一个简单的子带隧穿模型解释了上述特征. 最后还研究了在pn转换区中掺入替位杂质的情况. 在弱杂质下, 电导随费米能变化的曲线将不再对称; 当杂质较强时, 仅边界态的形成的电导台阶能够保持.  相似文献   

2.
We report on the study of cleaved-edge-overgrown line junctions with a serendipitously created narrow opening in an otherwise thin, precise line barrier. Two sets of zero-bias anomalies are observed with an enhanced conductance for filling factors ν>1 and a strongly suppressed conductance for ν<1. A transition between the two behaviors is found near ν≈1. The zero-bias anomaly (ZBA) line shapes find explanation in Luttinger liquid models of tunneling between quantum Hall edge states. The ZBA for ν<1 occurs from strong backscattering induced by suppression of quasiparticle tunneling between the edge channels for the n=0 Landau levels. The ZBA for ν>1 arises from weak tunneling of quasiparticles between the n=1 edge channels.  相似文献   

3.
We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields B(c) is a function of a single scaling argument /B-B(c)/T(-kappa), where the exponent kappa=0.42. This puzzling resemblance to a quantum Hall-insulator transition points to the importance of interedge correlation between the coupled edge states.  相似文献   

4.
We consider the edge and bulk conductances for 2D quantum Hall systems in which the Fermi energy falls in a band where bulk states are localized. We show that the resulting quantities are equal, when appropriately defined. An appropriate definition of the edge conductance may be obtained through a suitable time averaging procedure or by including a contribution from states in the localized band. In a further result on the Harper Hamiltonian, we show that this contribution is essential. In an appendix we establish quantized plateaus for the conductance of systems which need not be translation ergodic. An erratum to this article is available at .  相似文献   

5.
We show that multiple point contacts on a barrier separating two laterally coupled quantum Hall fluids induce Aharonov-Bohm (AB) oscillations in the tunneling conductance. These quantum coherence effects provide new evidence for the Luttinger liquid behavior of the edge states of quantum Hall fluids. For a two point contact, we identify coherent and incoherent regimes determined by the relative magnitude of their separation and the temperature. We analyze both regimes in the strong and weak tunneling amplitude limits as well as their temperature dependence. We find that the tunneling conductance should exhibit AB oscillations in the coherent regime, both at strong and weak tunneling amplitudes with the same period but with different functional form.  相似文献   

6.
We study the electronic edge states of graphene in the quantum Hall regime. For non-interacting electrons, graphene supports both electron-like and hole-like edge states. We find there are half as many edge states of each type in the lowest Landau level compared to higher Landau levels, leading to a quantization of the Hall conductance that is shifted relative to standard two dimensional electron gases. We also consider the effect of quantum Hall ferromagnetism on this edge structure, and find an unusual Luttinger liquid at the edge in undoped graphene. This arises due to a domain wall that forms near the edge between partially spin-polarized and valley-polarized regions. The domain wall has a U(1) degree of freedom which generates both collective and charged gapless excitations, whose consequences for tunneling experiments are discussed.  相似文献   

7.
We present an explanation for the anomalous behavior in tunneling conductance and noise through a point contact between edge states in the Jain series nu=p/(2np+1), for extremely weak backscattering and low temperatures [Y. C. Chung, M. Heiblum, and V. Umansky, Phys. Rev. Lett. 91, 216804 (2003)10.1103/PhysRevLett.91.216804]. We consider edge states with neutral modes propagating at finite velocity, and we show that the activation of their dynamics causes the unexpected change in the temperature power law of the conductance. Even more importantly, we demonstrate that multiple-quasiparticle tunneling at low energies becomes the most relevant process. This result will be used to explain the experimental data on current noise where tunneling particles have a charge that can reach p times the single-quasiparticle charge. In this Letter, we analyze the conductance and the shot noise to substantiate quantitatively the proposed scenario.  相似文献   

8.
We examine the effects of electron-electron interactions on transport between edge states in a multilayer integer quantum Hall system. The edge states of such a system, coupled by interlayer tunneling, form a two-dimensional, chiral metal at the sample surface. We calculate the temperature-dependent conductivity and the amplitude of conductance fluctuations in this chiral metal, treating Coulomb interactions and disorder exactly in the weak-tunneling limit. We find that the conductivity increases with increasing temperature, as observed in recent experiments, and we show that the correlation length characterizing conductance fluctuations varies inversely with temperature.  相似文献   

9.
Based on the Floquet theory and Keldysh's nonequilibrium Green's function methods, we study the electron transport through the HgTe/CdTe quantum wells (QWs) irradiated by a monochromatic laser field. We find that when the laser field is applied, the edge states are split into a series of sidebands. When the Fermi level lies among these sidebands, the quantized plateau of the conductance is destroyed. Instead, the conductance versus the radiation frequency exhibits the successive oscillation peaks corresponding to the resonant tunneling through the sidebands of the edge states. The resonant interaction between the quasiparticles and the radiation field opens the gaps in the crossing region of the sidebands, which can be tuned by the radiation strength and frequency. This leads to the shift of the oscillation peaks in the conductance. We also show that the amplitudes of the oscillation peaks in the conductance are governed by the radiation strength and frequency.  相似文献   

10.
We have performed scanning tunneling microscopy and differential tunneling conductance (dI/dV) mapping for the surface of the three-dimensional topological insulator Bi(2)Se(3). The fast Fourier transformation applied to the dI/dV image shows an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.  相似文献   

11.
We demonstrate that bulk band structure can have a strong influence in scanning tunneling microscopy measurements by resolving electronic interference patterns associated with scattering phenomena of bulk states at a metal surface and reconstructing the bulk band topology. Our data reveal that bulk information can be detected because states at the edge of the surface-projected bulk band have a predominant role on the scattering patterns. With the aid of density functional calculations, we associate this effect with an intrinsic increase in the projected density of states of edge states. This enhancement is characteristic of the three-dimensional bulk band curvature, a phenomenon analog to a van Hove singularity.  相似文献   

12.
《Nuclear Physics B》1999,559(3):637-672
We derive, from first principles, the complete Luttinger liquid theory of abelian quantum Hall edge states. This theory includes disorder and Coulomb interactions as well as the coupling to external electromagnetic fields. We introduce a theory of spatially separated edge modes, find an enlarged dual symmetry and obtain a complete classification of quasiparticle operators and tunneling exponents. The chiral anomaly on the edge is used to obtain unambiguously the Hall conductance. In resolving the problem of counter-flowing edge modes, we find that the long range Coulomb interactions play a fundamental role. In order to set up a theory for arbitrary ν we use the idea of a two-dimensional network of percolating edge modes. We derive an effective, single mode Luttinger liquid theory for tunneling processes into the edge which yields a continuous tunneling exponent 1/ν. The network approach is also used to re-derive the instanton vacuum theory for plateau transitions.  相似文献   

13.
The quantum properties of topological insulator magnetic quantum rings formed by inhomogeneous magnetic fields are investigated using a series expansion method for the modified Dirac equation. Cycloid-like and snake-like magnetic edge states are respectively found in the bulk gap for the normal and inverted magnetic field profiles. The energy spectra, current densities and classical trajectories of the magnetic edge states are discussed in detail. The bulk band inversion is found to manifest itself through the angular momentum transition in the ground state for the cycloid-like states and the resonance tunneling effect for the snake-like states.  相似文献   

14.
Under the conditions corresponding to tunnel-coupled edge current states in an open ring interferometer, oscillations of conductance as a function of gate voltage with two noticeably different periods are observed. The large-period oscillations are attributed to the electron tunneling between the source and drain regions via a closed edge state of the ring, when an integral number of magnetic flux quanta passes through its contour at the Fermi level. The small-period oscillations are explained by the effect of single-electron variations of the ring potential on the transparency of the barriers between the localized and delocalized edge states of the interfer-ometer.  相似文献   

15.
We consider the edge Hall conductance and show it is invariant under perturbations located in a strip along the edge (decaying perturbations far from the edge are also allowed). This enables us to prove for the edge conductances a general sum rule relating currents due to the presence of two different media located respectively on the left and on the right half plane. As a particular interesting case we put forward a general quantization formula for the difference of edge Hall conductances in semi-infinite samples with and without a confining wall. It implies in particular that the edge Hall conductance takes its ideal quantized value under a gap condition for the bulk Hamiltonian, or under some localization properties for a random bulk Hamiltonian (provided one first regularizes the conductance; we shall discuss this regularization issue). Our quantization formula also shows that deviations from the ideal value occurs if a semi-infinite distribution of impurity potentials is repulsive enough to produce current-carrying surface states on its boundary.UPR 7061 au CNRSUMR 8088 au CNRS  相似文献   

16.
A variety of transport phenomena observed at laterally confined two- dimensional electron systems (2DES) prove the occurrence of non-local contributions to the electronic conductance in these systems. However, this non-local regime accompanied by a non-equilibrium population of the edge states with respect to the 2D bulk state is quenched at rather low values of current-driving electric fields.We analyse the non-Ohmic behaviour of SdH oscillations at GaAs/GaAlAs Quantum Hall conductors on the basis of a model including edge and bulk conduction and deduce the non-equilibrium population of edge and bulk states quantitatively.The spatial separation between edge and bulk states was changed by tilting the samples with respect to the magnetic field. The resulting angular dependences of equilibration parameters could be quantitatively explained by the change of the ratio of spin splitting to cyclotron energy being present in 2DES in tilted magnetic fields.PACS index numbers: 73.20.Dx; 73.40.Hm  相似文献   

17.
Remarkable nonlinearities in the differential tunneling conductance between fractional quantum Hall edge states at a constriction are observed in the weak-backscattering regime. In the nu=1/3 state a peak develops as temperature is increased and its width is determined by the fractional charge. In the range 2/3相似文献   

18.
We demonstrate that an undoped two-dimensional carbon plane (graphene) whose bulk is in the integer quantum Hall regime supports a nonchiral Luttinger liquid at an armchair edge. This behavior arises due to the unusual dispersion of the noninteracting edge states, causing a crossing of bands with different valley and spin indices at the edge. We demonstrate that this stabilizes a domain wall structure with a spontaneously ordered phase degree of freedom. This coherent domain wall supports gapless charged excitations, and has a power law tunneling I-V with a nonintegral exponent. In proximity to a bulk lead, the edge may undergo a quantum phase transition between the Luttinger liquid phase and a metallic state.  相似文献   

19.
We study theoretically helical edge states of 2D and 3D topological insulators (TI) tunnel-coupled to metal leads and show that their transport properties are strongly affected by contacts as the latter play a role of a heat bath and induce damping and relaxation of electrons in the helical states of TI. A simple structure that produces a pure spin current in the external circuit is proposed. The current and spin current delivered to the external circuit depend on relation between characteristic lengths: damping length due to tunneling, contact length and, in case of 3D TI, mean free path and spin relaxation length caused by momentum scattering. If the damping length due to tunneling is the smallest one, then the electric and spin currents are proportional to the conductance quantum in 2D TI, and to the conductance quantum multiplied by the ratio of the contact width to the Fermi wavelength in 3D TI.  相似文献   

20.
We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the ν=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号