首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The individual and coupled effects of the incoming free-stream turbulence (FST) and surface roughness on the transition of a separated shear layer over a flat plate is numerically investigated using Large eddy simulation (LES). The upper wall of the test section is inviscid and specifically contoured to impose a streamwise pressure distribution over the flat plate to simulate the suction surface of a low pressure turbine (LPT) blade. The interaction of the streamwise streaks due to FST and roughness with the separated shear layer is captured. The streaks induced by FST are intermittent in nature and the streaks due to roughness are steady for a given topology of the rough surface. Both FST and roughness promoted near-wall mixing. The ‘net effect’ of mixing in the pre-separated region is manifested by a shift the inflection point of the velocity profile towards the wall. This resulted in the upstream shift of the transition point and a significant reduction in the size of the separation bubble. The combined effect of FST and roughness further reduced the size of separation bubble. The streamwise evolution of the boundary layer parameters has been compared for different cases. The potential ‘roughness benefit’ obtained in the case of highly loaded turbine blades in terms of its considerable reduction of profile loss is also shown.  相似文献   

2.
Direct numerical simulation of turbulent incompressible plane-channel flow between a smooth wall and one covered with regular three-dimensional roughness elements is performed. While the impact of roughness on the mean-velocity profile of turbulent wall layers is well understood, at least qualitatively, the manner in which other features are affected, especially in the outer layer, has been more controversial. We compare results from the smooth- and rough-wall sides of the channel for three different roughness heights of h += 5.4, 10.8, and 21.6 for Re τ of 400, to isolate the effects of the roughness on turbulent statistics and the instantaneous turbulence structure at large and small scales. We focus on the interaction between the near-wall and outer-layer regions, in particular the extent to which the near-wall behavior influences the flow further away from the surface. Roughness tends to increase the intensity of the velocity and vorticity fluctuations in the inner layer. In the outer layer, although the roughness alters the velocity fluctuations, the vorticity fluctuations are relatively unaffected. The higher-order moments and the energy budgets demonstrate significant differences between the smooth-wall and rough-wall sides in the processes associated with the wall-normal fluxes of the Reynolds shear stresses and turbulence kinetic energy. The length scales and flow dynamics in the roughness sublayer, the spatially inhomogeneous layer within which the flow is directly influenced by the individual roughness elements, are also examined. Alternative mechanisms involved in producing and maintaining near-wall turbulence in rough-wall boundary layers are also considered. We find that the strength of the inner/outer-layer interactions are greatly affected by the size of the roughness elements.  相似文献   

3.
A numerical investigation is carried out to study the transition of a subsonic boundary layer on a flat plate with roughness elements distributed over the entire surface. Post-transition, the effect of surface roughness on a spatially developing turbulent boundary layer (TBL) is explored. In the transitional regime, the onset of flow transition predicted by the current simulations is in agreement with the experimentally based correlations proposed in the literature. Transition mechanisms are shown to change significantly with the increasing roughness height. Roughness elements that are inside the boundary layer create an elevated shear layer and alternating high and low speed streaks near the wall. Secondary sinuous instabilities on the streaks destabilize the shear layer promoting transition to turbulence. For the roughness topology considered, it is observed that the instability wavelengths are governed by the streamwise and spanwise spacing between the roughness elements. In contrast, the roughness elements that are higher than the boundary layer create turbulent wakes in their lee. The scale of instability is much shorter and transition occurs due to the shedding from the obstacles. Post-transition, in the spatially developing TBL, the velocity defect profiles for both the smooth and rough walls collapsed when non dimensionalized in the outer units. However, when compared to the smooth wall, deviation in the Reynolds stresses are observable in the outer layer; the deviation being higher for the larger roughness elements.  相似文献   

4.
An experiment was carried out in a low-speed wind tunnel to study the turbulence structure of the boundary layer over a two-dimensional square cavity on a flat plate. The main purpose of this investigation is to examine the way a square cavity modifies the near-wall structure of the turbulent boundary layer leading to a possible drag reduction overd-type roughness. The experimental results on pressure coefficient and friction coefficient indicated a small reduction in total drag in this configuration. This seems to be due to the stable vortex flow observed within the cavity which absorbs and reorganizes the incoming turbulence in the cavity, thereby modifying the near-wall turbulence structure of the boundary layer. The resultant turbulence structure was very similar to that over drag-reducing riblets surface.  相似文献   

5.
An experiment was carried out in a low-speed wind tunnel to study the turbulence structure of the boundary layer over a two-dimensional square cavity on a flat plate. The main purpose of this investigation is to examine the way a square cavity modifies the near-wall structure of the turbulent boundary layer leading to a possible drag reduction overd-type roughness. The experimental results on pressure coefficient and friction coefficient indicated a small reduction in total drag in this configuration. This seems to be due to the stable vortex flow observed within the cavity which absorbs and reorganizes the incoming turbulence in the cavity, thereby modifying the near-wall turbulence structure of the boundary layer. The resultant turbulence structure was very similar to that over drag-reducing riblets surface.  相似文献   

6.
The aim of the present work is to investigate the spectral structure of a rapidly distorted boundary layer that develops on a flat plate in presence of a localised patch of roughness or/and grid-generated freestream turbulence. We observe that, at a certain distance downstream of the roughness patch the boundary layer exhibits a bimodal shape in the energy spectrum of the streamwise velocity fluctuations, similar to that found in a fully-turbulent boundary layer at relatively high Reynolds numbers. The physical mechanism that gives rise to the low-wavenumber peak in the spectrum, which represents long streamwise motions or “superstructures”, is identified to be the interaction of the broadband disturbances with the region of high shear near the wall in the boundary layer. We next show that the flat-plate boundary layer combined with surface roughness and grid turbulence can serve as building-block elements towards synthesising the wall-normal structure of a canonical turbulent boundary layer, in the context of large-scale streamwise motions. The rapidly distorted (or “synthetic”) boundary layer presents a simpler environment in which the coherent motions can evolve and therefore can enable a better characterisation of these motions. To further illustrate the utility of the present approach we compare results from our measurements with the predictions of the Rapid Distortion Theory (RDT). We show that the streamwise turbulence energy in the near-wall region of the rapidly distorted boundary layer grows linearly with time consistent with the RDT results on the effect of pure shear on an initially isotropic turbulence. Moreover close to the edge of the boundary layer the large-scale fluctuations experience an enhancement in the streamwise turbulence energy in accordance with the linear blocking model in the RDT framework. The present work thus highlights the importance of linear processes in wall turbulence and can help us identify aspects of it to which the linear theories can be meaningfully applied.  相似文献   

7.
The unsteady boundary layer over a semi-infinite flat plate was investigated in this paper. The flow involves the unsteady flow over a flat plate with leading edge accretion or ablation. The momentum boundary layer was further analyzed and it was shown that the leading edge ablation had a similar effect to the wall mass injection or upstream wall movement making the fluid blown away from the wall. The thermal boundary layer of the same flow was also studied. Results show that the leading edge accretion or ablation can greatly change the fluid motion and the heat transfer characteristics.  相似文献   

8.
Adaptive wall functions for the v2f turbulence model have been derived for the flow over a flat plate at zero pressure gradient. These wall functions were implemented via tables for the turbulence quantities and the friction velocity uτ. A special treatment for the ε and f boundary conditions is proposed. On fine grids (y+<1) this approach yields results consistent with the wall integration solution. Detailed numerical results are presented for a zero pressure gradient boundary layer and separated flow over a ramp. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Large‐eddy simulation (LES) and Reynolds‐averaged Navier–Stokes simulation (RANS) with different turbulence models (including the standard k?ε, the standard k?ω, the shear stress transport k?ω (SST k?ω), and Spalart–Allmaras (S–A) turbulence models) have been employed to compute the turbulent flow of a two‐dimensional turbulent boundary layer over an unswept bump. The predictions of the simulations were compared with available experimental measurements in the literature. The comparisons of the LES and the SST k?ω model including the mean flow and turbulence stresses are in satisfied agreements with the available measurements. Although the flow experiences a strong adverse pressure gradient along the rear surface, the boundary layer is unique in that intermittent detachment occurring near the wall. The numerical results indicate that the boundary layer is not followed by mean‐flow separation or incipient separation as shown from the numerical results. The resolved turbulent shear stress is in a reasonable agreement with the experimental data, though the computational result of LES shows that its peak is overpredicted near the trailing edge of the bump, while the other used turbulence models, except the standard k?ε, underpredicts it. Analysis of the numerical results from LES confirms the experimental data, in which the existence of internal layers over the bump surface upstream of the summit and along the downstream flat plate. It also demonstrates that the quasi‐step increase in skin friction is due to perturbations in pressure gradient. The surface curvature enhances the near‐wall shear production of turbulent stresses, and is responsible for the formation of the internal layers. The aim of the present work is to examine the response and prediction capability of LES with the dynamic eddy viscosity model as a sub‐grid scale to the complex turbulence structure with the presence of streamline curvature generated by a bumpy surface. Aiming to reduce the computational costs with focus on the mean behavior of the non‐equilibrium turbulent boundary layer of flow over the bump surface, the present investigation also explains the best capability of one of the used RANS turbulence models to capture the driving mechanism for the surprisingly rapid return to equilibrium over the trailing flat plate found in the measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Direct numerical simulation (DNS) of turbulent channel flow over a two-dimensional irregular rough wall with uniform blowing (UB) was performed. The main objective is to investigate the drag reduction effectiveness of UB on a rough-wall turbulent boundary layer toward its practical application. The DNS was performed under a constant flow rate at the bulk Reynolds number values of 5600 and 14000, which correspond to the friction Reynolds numbers of about 180 and 400 in the smooth-wall case, respectively. Based upon the decomposition of drag into the friction and pressure contributions, the present flow is considered to belong to the transitionally-rough regime. Unlike recent experimental results, it turns out that the drag reduction effect of UB on the present two-dimensional rough wall is similar to that for a smooth wall. The friction drag is reduced similarly to the smooth-wall case by the displacement of the mean velocity profile. Besides, the pressure drag, which does not exist in the smooth-wall case, is also reduced; namely, UB makes the rough wall aerodynamically smoother. Examination of turbulence statistics suggests that the effects of roughness and UB are relatively independent to each other in the outer layer, which suggests that Stevenson’s formula can be modified so as to account for the roughness effect by simply adding the roughness function term.  相似文献   

11.
This brief communication quantifies the time-events that contribute to the dynamics of wall-bounded flows with rough walls. Lumley’s Proper Orthogonal Decomposition (POD) methodology has been used to extract the energetic modes of the flow. We have used the concept of entropy, a representation of lack of organization in the flow, to represent the extent of spread of turbulent kinetic energy to higher modes. The rough-wall dynamics is dominated by fast activity (short time period) propagating modes and slow activity (long time period) roll modes. A single dominant timescale has been captured for all the propagating modes in flows over smooth walls; multiple dominant timescales representing various vortex shedding events are captured for rough walls. Variable-interval time averaging technique has been used to obtain the bursting frequency. The bursting frequency of rough-wall turbulence is higher compared to smooth-wall turbulence, suggesting that roughness enhances turbulence production activity. Another insightful observation for rough walls revealed by our study is that the vortex shedding frequency of roughness elements is much higher compared to the bursting frequency of rough-wall turbulence. POD provides a straightforward method to extract the natural frequency of shed vortices due to roughness, an important dynamical activity in rough-wall turbulent boundary layers.  相似文献   

12.
An experimental study of a fully developed turbulent channel flow and an adverse pressure gradient (APG) turbulent channel flow over smooth and rough walls has been performed using a particle image velocimetry (PIV) technique. The rough walls comprised two-dimensional square ribs of nominal height, k = 3 mm and pitch, p = 2k, 4k and 8k. It was observed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. Similarly, rib roughness significantly increased the level of turbulence production, Reynolds stresses and wall-normal transport of turbulence kinetic energy and Reynolds shear stress well beyond the roughness sublayer. On the contrary, the distributions of the eddy viscosity, mixing length and streamwise transport of turbulence kinetic energy and Reynolds shear stress were reduced by wall roughness, especially in the outer layer. Adverse pressure gradient produced a further reduction in the mean velocity (in comparison to the results obtained in the parallel section) but increased the wall-normal extent across which the mean flow above the ribs is spatially inhomogeneous in the streamwise direction. APG also reinforced wall roughness in augmenting the equivalent sand grain roughness height. The combination of wall roughness and APG significantly increased turbulence production and Reynolds stresses except in the immediate vicinity of the rough walls. The transport velocities of the turbulence kinetic energy and Reynolds shear stress were also augmented by APG across most part of the rough-wall boundary layer. Further, APG enhanced the distributions of the eddy viscosity across most of the boundary layer but reduced the mixing length outside the roughness sublayer.  相似文献   

13.
A steady-state supersonic flow of a viscous heat-conducting gas with an admixture of small droplets over a flat plate is considered. The plate surface is assumed to be thermally insulated, and its equilibrium temperature is greater than the evaporation point of the droplets. In contrast to previous publications, the case of low-inertia droplets, which do not deposit onto the wall and have time to evaporate in the boundary layer, is considered. Within the two-fluid approximation for the laminar gasdroplet boundary layer with a compressible carrier phase, a parametric numerical study of the effect of evaporating droplets on the boundary layer structure and the temperature of the adiabatic wall is performed. The similarity parameters are found and the range of these parameters is determined, in which the adiabatic-wall temperature is reduced substantially due to the droplet evaporation even for very low initial concentrations of the liquid phase. This makes promising the use of the condensed phase in the schemes of gasdynamic energy separation based on heat transfer between the flows in subsonic and supersonic boundary layers.  相似文献   

14.
带控制片方柱绕流的非定常数值模拟   总被引:2,自引:0,他引:2  
张兄文  李国君  李军  李亮 《应用力学学报》2005,22(2):275-278,i011
对高雷诺数下带控制片的方体(在方柱之前放置一小尺度的柱形薄片)非定常绕流进行了数值模拟。数值模拟方法采用RNG重整化群紊流模型,SIMPLE算法,在非定常计算中引入双重时间步方法,将方体和控制片区域作为求解域的一部分作整体求解。结果表明,控制片与方柱之间距离的不同,使得控制片所形成的涡被抑止或产生卡门涡街,从而对柱体侧面边界层的分离发生影响,产生三种典型的流态,柱体时均阻力系数相对于无控制片的情况迅速减小,当控制片偏离柱体轴心时,柱体升力系数迅速增大,偏心至柱体外壁面附近达到极大值。阻力系数达到最小值后将产生跳跃式的增大,而升力系数在达到最大值后也将产生跳跃式的减小。  相似文献   

15.
The velocity profile, turbulence intensity profile, streaky structure and bursting frequency in turbulent boundary layers over a flat plate with compliant coatings were investigated by Laser Doppler Anemometry and conditional sampling techniques. This experiment led to the conclusions that in boundary layer flows on a compliant wall, as compared with that on a rigid wall, the log law region was extended further away from the wall, and that the maximum value of each turbulence intensity profile in the near wall region was reduced and the bursting frequency obviously decreased with the compliant coatings. One point worthy of notice was that the above results were very much like those of polymer drag reduction experiments. The project is supported by the National Natural Science Foundation of China.  相似文献   

16.
In this work we extend the method of the constrained large-eddy simulation(CLES) to simulate the turbulent flow over inhomogeneous rough walls. In the original concept of CLES, the subgrid-scale(SGS) stress is constrained so that the mean part and the fluctuation part of the SGS stress can be modelled separately to improve the accuracy of the simulation result. Here in the simulation of the rough-wall flows, we propose to interpret the extra stress terms in the CLES formulation as the roughness-induced stress so that the roughness inhomogeneity can be incorporated by modifying the formulation of the constrained SGS stress. This is examined with the simulations of the channel flow with the spanwise alternating high/low roughness strips. Then the CLES method is employed to investigate the temporal response of the turbulence to the change of the wall condition from rough to smooth. We demonstrate that the temporal development of the internal boundary layer is just similar to that in a spatial rough-tosmooth transition process, and the spanwise roughness inhomogeneity has little impact on the transition process.  相似文献   

17.
A high Reynolds number flat plate turbulent boundary layer is investigated in a wind-tunnel experiment. The flow is subjected to an adverse pressure gradient which is strong enough to generate a weak separation bubble. This experimental study attempts to shed some new light on separation control by means of streamwise vortices with emphasize on the change in the boundary layer turbulence structure. In the present case, counter-rotating and initially non-equidistant streamwise vortices become and remain equidistant and confined within the boundary layer, contradictory to the prediction by inviscid theory. The viscous diffusion cause the vortices to grow, the swirling velocity component to decrease and the boundary layer to develop towards a two-dimensional state. At the position of the eliminated separation bubble the following changes in the turbulence structure were observed. The anisotropy state in the near-wall region is unchanged, which indicates that it is determined by the presence of the wall rather than the large scale vortices. However, the turbulence in the outer part of the boundary layer becomes overall more isotropic due to an increased wall-normal mixing and a significantly decreased production of streamwise fluctuations. The turbulent kinetic energy is decreased as a consequence of the latter. Despite the complete change in mean flow, the spatial turbulence structure and the anisotropy state, the process of transfer of turbulent kinetic energy to the spanwise fluctuating component seems to be unchanged. Local regions of anisotropy are strongly connected to maxima in the turbulent production. For example, at spanwise positions in between those of symmetry, the spanwise gradient of the streamwise velocity cause significant production of turbulent fluctuations. Transport of turbulence in the spanwise direction occurs in the same direction as the rotation of the vortices.  相似文献   

18.
This work characterizes the impacts of the realistic roughness due to deposition of foreign materials on the turbulent flows at surface transition from elevated rough-wall to smooth-wall. High resolution PIV measurements were performed in the streamwise-wall-normal (xy) planes at two different spanwise positions in both smooth and rough backward-facing step flows. The experiment conditions were set at a Reynolds number of 3450 based on the free stream velocity U and the mean step height h, expansion ratio of 1.01, and the ratio of incoming boundary layer thickness to the step height, δ/h, of 8. The mean flow structures are observed to be modified by the roughness and they illustrate three-dimensional features in rough backward-facing step flows. The mean reattachment length Xr is significantly reduced by the roughness at one PIV measurement position while is slightly increased by the different roughness topography at the other measurement position. The mean velocity profiles at the reattachment point indicate that the studied roughness weakens the perturbation of the step to the incoming turbulent flow. Comparisons of Reynolds normal and shear stresses, productions of normal stresses, quadrant analysis of the instantaneous shear-stress contributing events, and mean spanwise vorticity reveal that the turbulence in the separated shear layer is reduced by the studied roughness. The results also indicate an earlier separation of the turbulent boundary layer over the current rough step, probably due to the adverse pressure gradient produced by the roughness topography even before the step.  相似文献   

19.
柔性壁面湍流边界层相干结构控制的实验研究   总被引:3,自引:0,他引:3  
本文利用热膜测速技术对刚性壁面和柔性壁面湍流边界层的流向速度分量进行了实验测量,首先研究了柔性壁面对平均速度分布和湍流度分布的影响,结果表明:柔性壁面的边界层速度分布在对数律层向上有所平移,缓冲层加厚,具有一般的壁面减阻特征;而柔性壁的湍流度比刚性壁的湍流度要低,分布也更为平坦。然后综合运用自相关法和条件采样技术研究了湍流近壁区的相干结构,结果表明:刚性壁自相关曲线的第二峰值出现的时间比柔性壁的短,柔性壁的猝发频率比刚性壁的低许多。实验结果表明柔性壁面具有一定的减阻作用。  相似文献   

20.
A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author’s knowledge, this is the first experimental study to report a modification of ‘superstructures’ in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号