首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A detailed density functional study was performed for the vinyl-vinyl reductive elimination reaction from bis-sigma-vinyl complexes [M(CH=CH(2))(2)X(n)]. It was shown that the activity of these complexes decreases in the following order: Pd(IV), Pd(II) > Pt(IV), Pt(II), Rh(III) > Ir(III), Ru(II), Os(II). The effects of different ligands X were studied for both platinum and palladium complexes, which showed that activation barriers for C-C bond formation reaction decrease in the following order: X = Cl > Br, NH(3) > I > PH(3). Steric effects induced either by the ligands X or by substituents on the vinyl group were also examined. In addition, the major factors responsible for stereoselectivity control on the final product formation stage and possible involvement of asymmetric coupling pathways are reported. In all cases DeltaE, DeltaH, DeltaG, and DeltaG(aq) energy surfaces were calculated and analyzed. The solvent effect calculation shows that in a polar medium halogen complexes may undergo a reductive elimination reaction almost as easily as compounds with phosphine ligands.  相似文献   

2.
王连弟  刘婷婷 《催化学报》2018,39(2):327-333
含氮配体具有稳定性好、易于合成等优点,而且其过渡金属配合物表现出较高的催化活性,因而在配位化学和均相催化等研究领域受到了广泛关注.基于吡啶骨架的三齿NNN配体具有良好的配位能力和丰富的配位模式,如吡啶桥联的对称配体2,2':6',2'-三吡啶、2,6-双噁唑啉基吡啶、2,6-双亚胺基吡啶和2,6-双吡唑基吡啶等在有机合成及配合物催化剂制备等方面得到广泛应用.2,6-双四唑基吡啶也是基于吡啶的多齿配体,已被用于合成发光材料或高效回收次锕系元素等,但是其在催化领域的应用较少.过渡金属催化的不饱和化合物的转移氢化反应具有反应条件温和、不直接使用氢气等优点,因而受到越来越多的关注.一系列优异的配体及配合物在转移氢化反应中脱颖而出,如对甲苯磺酰手性二胺配体、2-甲胺基吡啶钌配合物、配体中含有NH官能团的过渡金属配合物等.我们也报道了几种吡啶基桥联的含氮配体及其钌配合物,并应用于催化酮的转移氢化反应.在此基础上,本文合成了三种连有不同膦配体的2,6-双四唑基吡啶钌配合物,并用于催化酮的转移氢化反应.从N~2,N~6-二对甲苯基-2,6-吡啶二甲酰胺(1)出发,经氯代/环化两步反应合成4-氯吡啶基桥联双四唑化合物(2),配体2与RuCl_2(PPh_3)_3在对应的反应条件下制得三种连有不同膦配体的2,6-双四唑基吡啶钌配合物(3),其分子结构通过核磁共振波谱和X射线单晶晶体结构测定得到确认.将这三种钌配合物应用于催化酮的转移氢化反应,当催化剂用量为0.5 mol%时,在异丙醇回流条件下,比较连有不同膦配体的2,6-双四唑基吡啶钌配合物的催化活性.膦配体为1,4-双(二苯基膦)丁烷的钌配合物3b表现出更高的催化活性,含有双三苯基膦的钌配合物3a则表现出与3b相当或略低的催化活性,含有1,5-双(二苯基膦)戊烷的钌配合物3c活性最差.以3b为催化剂拓展了一系列酮底物,取代的芳香酮、链状和环状的脂肪酮都可以高效地被还原,大部分酮底物以95%的转化率还原成相应的醇.含有氯取代基的苯乙酮对反应有较大的加速作用,反应时间更短,转化率更高.由于羰基环的张力,1-四氢萘酮与9-芴酮转化率略低.结合实验结果与相关文献,提出了一条基于Ru-H活性中间体的内层反应机理:钌配合物在iPrOK作用下生成Ru(Ⅱ)-烷氧基中间体Ⅰ,随后发生β-H消除反应脱去一分子丙酮得到Ru-H配合物,Ru-H配合物与酮底物作用经过渡态Ⅱ生成另一分子Ru(Ⅱ)-烷氧基中间体Ⅲ,随后异丙醇与烷氧基发生交换生成目标产物,同时生成中间体Ⅰ完成催化循环.  相似文献   

3.
New N,N′‐substituted imidazolium salts and their corresponding dibromidopyridine–palladium(II) complexes were successfully synthesized and characterized. Reactions of palladium bromide with the newly synthesized N,N′‐substituted imidazolium bromides ( 2a and 2b ) in pyridine afforded the corresponding new N‐heterocyclic carbene pyridine palladium(II) complexes ( 3a and 3b ) in high yields. Their single‐crystal X‐ray structures show a distorted square planar geometry with the carbene and pyridine ligands in trans position. Both complexes show a high catalytic activity in carbonylative Sonogashira coupling reactions of aryl iodides and aryl diiodides with arylalkynes, alkylalkynes and dialkynes.  相似文献   

4.
A series of novel imidazolium salts bearing hydrophilic tetraethylene glycol (TEG) and/or hydrophobic long-chain alkyl (n-C12) functionalities, which are precursors for desired N-heterocyclic carbene (NHC) ligands, were synthesized and characterized. Rh(I)-NHC complexes were prepared in good yields by the silver carbene transfer method with NHC-Ag species derived from the imidazolium salts. The molecular structure of the Rh(I)-NHC complex having n-C12 chains has been determined by a single-crystal X-ray diffraction study and the complex is found to possess extended alkyl chains with anti conformations in the solid state. Hydrosilylation with the Rh(I) complexes and Suzuki-Miyaura coupling reactions with the Pd(II) complexes with these NHC ligands were carried out. In the latter case, the TEG moiety enhances catalytic activity considerably.  相似文献   

5.
In this account, we focus on results from our laboratory to illustrate recent developments in various fields of organometallic chemistry. Studies on hemilabile P,N donor ligands and on the ion-pair behaviour of cationic Pd(II) complexes have led to the full characterization of complexes with η1-allyl ligands. This still rare bonding mode for the allyl ligand in palladium chemistry allows facile insertion of CO into the Pd-C σ-bond, in contrast to the situation in related η3-allyl Pd(II) complexes. In order to develop new homogeneous catalysts for the selective dimerization and oligomerization of ethylene, a range of Ni(II) complexes have been prepared with new chelating P,N ligands where P represents a phosphine, phosphinite or phosphonite donor group and N a pyridine or oxazoline moiety. Finally, we shall examine bottom-up approaches to the formation of new nanomaterials of magnetic or catalytic interest by covalent anchoring of metal complexes and clusters into mesoporous materials using functional phosphine or alkyne ligands containing an alkoxysilyl group.  相似文献   

6.
The electronic effects of the bidentate ligands play a vital role in the transition metal-catalyzed conjugate addition reactions. Here, the insertion step (rate-determining step (RDS) of the conjugate addition) catalyzed by Pd(II)/Rh(I)-complexes with 26 bipyridine-type (bpy) ligands linking different substituent groups in the opposite sides (C4, C4′ position) are systematically studied by density functional theory (DFT). It is found that for both Pd(II)- and Rh(I)-catalysis, the stronger the electron-withdrawing group connecting to both C4 and C4′ positions of bpy ligands can promote the insertion step. The predominance of π-back donation in Rh(I) and σ-donation in Pd(II) is the main reason for above different electronic properties of Pd(II) and Rh(I)-catalysis. This work gives enough theoretical guide to the rational design of the efficient transition metal-based catalyst for conjugate addition.  相似文献   

7.
The 15N NMR data for 105 complexes of Pd(II), Pt(II), Au(III), Co(III), Rh(III), Ir(III), Pd(IV), and Pt(IV) complexes with simple azines such as pyridine, 2,2'-bipyridine, 1,10-phenanthroline, quinoline, isoquinoline, 2,2'-biquinoline, 2,2':6', 2'-terpyridine and their alkyl or aryl derivatives have been reviewed. The 15N NMR coordination shifts, i.e. the differences between the 15N chemical shifts of the same nitrogen in the molecules of the complex and the ligand (Delta(15N) (coord) = delta(15N) (compl)--delta(15N) (lig)), have been related to some structural features of the reviewed coordination compounds, like the type of the central ion and the character of auxiliary ligands (mainly in trans position). These Delta(15N) (coord) parameters are negative, their absolute magnitudes (ca 30-150 ppm) generally increasing in the metal order Au(III) < Pd(II) < Pt(II) and Rh(III) < Co(III) < Pt(IV) < Ir(III), as well as with the enhanced trans influence of the other donor atoms (H, C < Cl < N).  相似文献   

8.
New isocyanide ligands with meta‐terphenyl backbones were synthesized. 2,6‐Bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exhibited the highest rate acceleration in rhodium‐catalyzed hydrosilylation among other isocyanide and phosphine ligands tested in this study. 1H NMR spectroscopic studies on the coordination behavior of the new ligands to [Rh(cod)2]BF4 indicated that 2,6‐bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exclusively forms the biscoordinated rhodium–isocyanide complex, whereas less sterically demanding isocyanide ligands predominantly form tetracoordinated rhodium–isocyanide complexes. FTIR and 13C NMR spectroscopic studies on the hydrosilylation reaction mixture with the rhodium–isocyanide catalyst showed that the major catalytic species responsible for the hydrosilylation activity is the Rh complex coordinated with the isocyanide ligand. DFT calculations of model compounds revealed the higher affinity of isocyanides for rhodium relative to phosphines. The combined effect of high ligand affinity for the rhodium atom and the bulkiness of the ligand, which facilitates the formation of a catalytically active, monoisocyanide–rhodium species, is proposed to account for the catalytic efficiency of the rhodium–bulky isocyanide system in hydrosilylation.  相似文献   

9.
Novel endo- and exocyclic phosphine ligands possessing different functionalities obtained by reduction of the PO precursors with desired stereochemistry are discussed. The diastereoselective deoxygenation including the catalytic reduction processes, the factors defining the reactivity and the role of the substituents on the stability of phosphorus atom configuration in a series of 3-aryl-3-phosphabicyclo[3.1.0]hexanes are reported. The complexation features of the ligands with Rh(III) and Pd(II) were examined and Rh(III) complexes were tested in styrene hydroformylation showing the structure-activity dependence.  相似文献   

10.
The chloro-bridged rhodium and iridium complexes [M2(BTSE)2Cl2] (M = Rh 1, Ir 2) bearing the chelating bis-sulfoxide tBuSOC2H4SOtBu (BTSE) were prepared by the reaction of [M2(COE)4Cl2] (M = Rh, Ir; COE = cyclooctene) with an excess of a racemic mixture of the ligand. The cationic compounds [M(BTSE)2][PF6] (M = Rh 3, Ir 4), bearing one S- and one O-bonded sulfoxide, were also obtained in good yields. The chloro-bridges in 2 can be cleaved with 2-methyl-6-pyridinemethanol and 2-aminomethyl pyridine, resulting in the iridium(I) complexes [Ir(BTSE)(Py)(Cl)] (Py = 2-methyl-6-pyridinemethanol 5, 2-aminomethyl-pyridine 6). In case of the bulky 2-hydroxy- isopropyl-pyridine, selective OH oxidative addition took place, forming the Ir(III)-hydride [Ir(BTSE)(2-isopropoxy-pyridine)(H)(Cl)] 7, with no competition from the six properly oriented C-H bonds. The cationic rhodium(I) and iridium(I) compounds [M(BTSE)(2-aminomethyl-pyridine)][X] (M = Rh 8, Ir 10), [Rh(BTSE)(2-hydroxy- isopropyl-pyridine)][X] 9(stabilized by intramolecular hydrogen bonding), [Ir(BTSE)(pyridine)2][PF6] 12, [Ir(BTSE)(alpha-picoline)2][PF6] 13, and [Rh(BTSE)(1,10-phenanthroline)][PF6] 14 were prepared either by chloride abstraction from the dimeric precursors or by replacement of the labile oxygen bonded sulfoxide in 3 or 4. Complex 14 exhibits a dimeric structure in the solid state by pi-pi stacking of the phenanthroline ligands.  相似文献   

11.
The cis‐[Rh(CO)2ClL] (1) complexes, where L = 2‐methylpyridine (a), 3‐methylpyridine (b), 4‐methylpyridine (c), 2‐phenylpyridine (d), 3‐phenylpyridine (e), 4‐phenylpyridine (f), undergo oxidative addition reactions with various electrophiles, like CH3I, C2H5I, C6H5CH2Cl or I2, to yield complexes of the types [Rh(CO)(COR)ClXL] (2) (where R = CH3 (i), C2H5 (ii), X = I; R = C6H5CH2 (iii), X = Cl) or [Rh(CO)ClI2L] (3) and [Rh(CO)2ClI2L] (4). The pseudo‐first‐order rate constants of CH3I addition with complexes 1 containing pyridine (g) and 2‐substituted pyridine (a and d) ligands were found to follow the order pyridine >2‐methylpyridine >2‐phenylpyridine. The catalytic activity of complexes 1 containing different pyridine ligands (a–g) on carbonylation of methanol was studied and, in general, a higher turnover number was obtained compared with that of the well‐known species [Rh(CO)2I2]?. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The reactions of 1-phenylphosphole (PP), 3-methyl-1-phenylphosphole (mPP), 3,4-dimethyl-1-phenylphosphole (dPP) and, in certain instances, 1-n-butyl-3,4-dimethylphosphole (dBP) with some transition metal chlorides and some metal-Cl-CO systems are reported. These reactions show that simple phospholes in general unexpectedly behave much like ordinary tertiary phosphines and that, unlike the reactions with Ni(II), Pd(II) and Pt(II), the complexes formed are conventional in most respects. However, a few unusual reactions were observed. For example, mPP partially reduces Ru(III) to give a mixed-valent Ru(III)-Ru(II) complex while PP reduces Ir(III) to Ir(I). From infrared spectroscopic studies of the square-planar Rh(I) complexes L2Rh(CO) Cl (L = phosphole), it appears that donor character decreases with decreasing substitution on the phosphole ring carbon atoms. Phosphorus-phenyl cleavage has been observed in reactions of 1-phenylphosphole with Rh-CO systems. The results are briefly discussed in relation to the behaviour of other phospholes in similar reactions and in the context of the electronic structure of phospholes.  相似文献   

13.
The transfer hydrogenation of ketones catalyzed by transition metal complexes has attracted much attention. A series of ruthenium(II) complexes bearing 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine ligands (R-BTPs) were synthesized and characterized by NMR analysis and X-ray diffraction. These ruthenium(II) complexes were applied in the transfer hydrogenation of ketones. Their different catalytic activity were attributed to the alkyl arms on the 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine. As the length of the alkyl arms rising, the catalytic activities of the complex catalysts decreased. By means of 0.4 mol % catalyst RuCl2(PPh3)(3-methylbutyl-BTP) in refluxing 2-propanol, a variety of ketones were reduced to their corresponding alcohols with >95% conversion over a period of 3 h. © 2019 Elsevier Science. All rights reserved.  相似文献   

14.
Reactions of 2‐[1‐(3,5‐dimethylpyrazol‐1‐yl)ethyl]pyridine (L1) and 2‐[1‐(3,5‐diphenylpyrazol‐1‐yl)ethyl]pyridine (L2) with the [Pd (COD)Cl2] or [Pd (COD)MeCl] produced palladium (II) complexes [Pd( L1 )ClMe] ( 1 ), [Pd( L1 )Cl2] ( C2 ), [Pd( L2 )ClMe] ( 3 ), and [Pd( L2 )Cl2] ( 4 ) in quantitative yields. Solid state structures of complexes 1 , 3 and 4 established the formation of mononuclear compounds, containing one bidentate ligand unit per metal atom, to give square planar complexes. All the other spectroscopic characterization data and elemental analyses were consistent with the observed structures. All the palladium (II) complexes 1–4 gave active catalysts in the methoxycarbonylation of 1‐octenes. The catalysts demonstrated 100% chemoselectivities towards esters and favored the formation of linear isomers. Reaction conditions such as the type of phosphine derivative, acid promoter, solvent system, time, pressure and temperature have been investigated and shown to affect both the catalytic activity and regio‐selectivity of the catalysts. Solid‐angle modelling established the comparable steric contributions from the ligands, consistent with the similar regioselectivities of the resultant catalysts.  相似文献   

15.
Cyclodiphosphazanes having hemilabile ponytails such as cis-[(t)()BuNP(OC(6)H(4)OMe-o)](2) (2), cis-[(t)()BuNP(OCH(2)CH(2)OMe)](2) (3), cis-[(t)BuNP(OCH(2)CH(2)SMe)](2) (4), and cis-[(t)BuNP(OCH(2)CH(2)NMe(2))](2) (5) were synthesized by reacting cis-[(t)()BuNPCl](2) (1) with corresponding nucleophiles. The reaction of 2 with [M(COD)Cl(2)] afforded cis-[MCl(2)(2)(2)] derivatives (M = Pd (6), Pt (7)), whereas, with [Pd(NCPh)(2)Cl(2)], trans-[MCl(2)(2)(2)] (8) was obtained. The reaction of 2 with [Pd(PEt(3))Cl(2)](2), [{Ru(eta(6)-p-cymene)Cl(2)](2), and [M(COD)Cl](2) (M = Rh, Ir) afforded mononuclear complexes of Pd(II) (9), Ru(II) (11), Rh(I) (12), and Ir(I) (13) irrespective of the stoichiometry of the reactants and the reaction condition. In the above complexes the cyclodiphosphazane acts as a monodentate ligand. The reaction of 2 with [PdCl(eta(3)-C(3)H(5))](2) afforded binuclear complex [(PdCl(eta(3)-C(3)H(5)))(2){((t)BuNP(OC(6)H(4)OMe-o))(2)-kappaP}] (10). The reaction of ligand 3 with [Rh(CO)(2)Cl](2) in 1:1 ratio in CH(3)CN under reflux condition afforded tetranuclear rhodium(I) metallamacrocycle (14), whereas the ligands 4 and 5 afforded bischelated binuclear complexes 15 and 16, respectively. The crystal structures of 8, 9, 12, 14, and 16 are reported.  相似文献   

16.
Four novel mixed-ligand complexes of Co(II), Ni(II), Cu(II), and Zn(II) with m-hydroxybenzoate (m-Hba) and N,N-diethylnicotinamide (Dena) were synthesized and characterized on the basis of elemental analysis, FT-IR spectroscopic study, and solid state UV-Vis spectrophotometric and magnetic-susceptibility data. The thermal behavior of the complexes was studied by combined TG-DTA methods in static air atmosphere, and the mass spectra were recorded. The Co(II), Ni(II), and Zn(II) complexes, except for the Cu(II) complex, contain two molecules of coordinated water, two m-Hba, and two Dena ligands per formula unit. In these complexes, the m-Hba and Dena behave as monodentate ligands via acidic oxygen and nitrogen of the pyridine ring. In the Cu(II) complex, the m-Hba is coordinated as monoanionic bidentate ligand through acidic oxygen and carbonyl oxygen. Dena is bonded with Cu2+ as monodentate ligand by the nitrogen atom of the pyridine ring. The decomposition pathways and the stability of the complexes are interpreted in terms of the proposed structural data. The final decomposition products were found to be the respective metal oxides. The article was submitted by the authors in English.  相似文献   

17.
In this article, N‐(2‐aminophenyl)arylsulfonamides (1–5) were successfully synthesized by the reaction of o‐phenylenediamine and various benzenesulfonyl chlorides. The Schiff base derivatives (1a–f; 4e) of those compounds were obtained using different aldehydes. Then, a series of neutral‐four coordinate Pd(II) complexes (6–10) were prepared from the reaction of Pd(OAc)2 and 1–5. On the other hand, when we tried to synthesize Pd(II) complexes containing Schiff base/sulfonamide ligands, two different situations were observed. Generally, when an electron‐donating group was attached to the imine fragment (1a–d) except for 1f, the Schiff base hydrolyzed and 6 was isolated. When an electron‐withdrawing group was attached to the imine fragment (1e, 4e), neutral four‐coordinate Pd(II) complexes (11–13) bearing Schiff base/sulfonamide ligands were isolated. The synthesized compounds were characterized by FT‐IR, elemental analysis and NMR spectroscopy. The complexes were used as a catalyst in the oxidation reaction of benzyl alcohol to benzaldehyde in the presence of H5IO6 in acetonitrile. All complexes showed satisfactory catalytic activity. The highest catalytic activity was obtained with 9. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Several metal complexes with a boron dipyrromethene (BODIPY)‐functionalized N‐heterocyclic carbene (NHC) ligand 4 were synthesized. The fluorescence in [( 4 )(SIMes)RuCl2(ind)] complex is quenched (Φ=0.003), it is weak in [( 4 )PdI2(Clpy)] (Φ=0.033), and strong in [( 4 )AuI] (Φ=0.70). The BODIPY‐tagged complexes can experience pronounced changes in the brightness of the fluorophore upon ligand‐exchange and ligand‐dissociation reactions. Complexes [( 4 )MX(1,5‐cyclooctadiene)] (M=Rh, Ir; X=Cl, I; Φ=0.008–0.016) are converted into strongly fluorescent complexes [( 4 )MX(CO)2] (Φ=0.53–0.70) upon reaction with carbon monoxide. The unquenching of the Rh and Ir complexes appears to be a consequence of the decreased electron density at Rh or Ir in the carbonyl complexes. In contrast, the substitution of an iodo ligand in [( 4 )AuI] by an electron‐rich thiolate decreases the brightness of the BODIPY fluorophore, rendering the BODIPY as a highly sensitive probe for changes in the coordination sphere of the transition metal.  相似文献   

19.
《Comptes Rendus Chimie》2007,10(7):573-582
This article provides an overview of the chemistry of monoanionic S–P–S and dianionic S–C–S ligands featuring two phosphinosulfide ligands as pendant groups. These new pincer-type structures are easily assembled from phosphinines and the bis-sulfide derivative of the bis(diphenylphosphino)methane, respectively. Monoanionic S–P–S pincer ligands easily coordinate group 10 and group 9 metal fragments through displacement reactions. Palladium(II) complexes of S–P–S ligands efficiently catalyze cross-coupling processes, allowing the formation of boronic esters and biphenyl derivatives. Rh(I) complexes of S–P–S ligands react in a regioselective way with small molecules (O2, SO2, CS2, MeI) to afford the corresponding Rh(I) or Rh(III) derivatives. S–C–S dianonic ligands, which are readily obtained through a bis-metallation at the central carbon atom of Ph2P(S)CH2P(S)Ph2, react with Pd(II) and Ru(II) precursors to afford new carbene complexes. Samarium and thulium alkylidene complexes of these S–C–S dianionic ligands were synthesized in a similar way. Reaction of the lanthanide derivatives with ketones or aldehydes yields olefinic derivatives through a ‘Wittig-like’ process.  相似文献   

20.
《Journal of Coordination Chemistry》2012,65(16-18):2787-2799
Abstract

Mononuclear trans-Pd(II)–NHC complexes (where NHC?=?N-heterocyclic carbene) bearing asymmetrically substituted NHC-ligand have been synthesized via transmetalation reaction between Ag(I)–NHC complexes and [Pd(NCCH3)2Cl2]. The NHC precursors are accessible in two steps by N-n-alkyl reactions of benzimidazole. The resultant benzimidazolium salts were deprotonated with Ag2O by in situ deprotonation to facilitate the formation of mononuclear Ag(I)–NHC complexes. Single-crystal structural study for Pd(II)–NHC shows that the palladium(II) ion exhibits a square-planar geometry of two NHC ligands and two chloride ions. The cytotoxicity study was investigated against breast cancer cell line (MCF-7). The Ag(I)–NHC complexes exhibit better activities than their corresponding Pd(II)–NHC complexes, whereas all benzimidazolium salts are inactive toward MCF-7 cancer cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号