首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a microfabricated free-flow electrophoresis device with integrated ion permeable membranes. In order to obtain continuous lanes of separated components an electrical field is applied perpendicular to the sample flow direction. This sample stream is sandwiched between two sheath flow streams, by hydrodynamic focusing. The separation chamber has two open side beds with inserted electrodes to allow ventilation of gas generated during electrolysis. To hydrodynamically isolate the separation compartment from the side electrodes, a photo-polymerizable monomer solution is exposed to UV light through a slit mask for in situ membrane formation. These so-called salt-bridges resist the pressure driven fluid, but allow ion transport to enable electrical connection. In earlier devices the same was achieved by using open side channel arrays. However, only a small fraction of the applied voltage was effectively utilized across the separation chamber during free-flow electrophoresis and free-flow isoelectric focusing. Furthermore, the spreading of the carrier ampholytes into the side channels resulted in a very restricted pH gradient inside the separation chamber. The chip presented here allows at least 10 times more efficient use of the applied potential and a nearly linear pH gradient from pH 3 to 10 during free-flow isoelectric focusing could be established. Furthermore, the application of hydrodynamic focusing in combination with free-flow electrophoresis can be used for guiding the separated components to specific chip outlets. As a demonstration, several standard fluorescent markers were separated and focused by free-flow zone electrophoresis and by free-flow isoelectric focusing employing a transversal voltage of up to 150 V across the separation chamber.  相似文献   

2.
Conjugation of biomolecules to colloidal nanoparticles, such as quantum dots (QDs), often leads to change in mobility. We discover that linking DNA molecules to quantum dots alters their surface charge density without significantly increasing the hydrodynamic radius, causing a prominent shift in electrophoretic mobility. In this study, a high‐resolution molecular quantification method named quantification by QDs electrophoretic mobility shift (qQEMS) is developed based on the charge‐dominant transformation that closely associates DNA quantity to QDs electrophoretic mobility. The versatility of qQEMS is demonstrated by a number of quantification assays in which DNA molecules functioned as enzyme substrates, target‐specific probes, and competitive charge carriers. qQEMS shows a great potential as a generic and versatile quantification platform for a wide range of applications.  相似文献   

3.
Parallel analysis of biomolecules on a microfabricated capillary array chip   总被引:2,自引:0,他引:2  
Shen Z  Liu X  Long Z  Liu D  Ye N  Qin J  Dai Z  Lin B 《Electrophoresis》2006,27(5-6):1084-1092
This paper focused on a self-developed microfluidic array system with microfabricated capillary array electrophoresis (mu-CAE) chip for parallel chip electrophoresis of biomolecules. The microfluidic array layout consists of two common reservoirs coupled to four separation channels connected to sample injection channel on the soda-lime glass substrate. The excitation scheme for distributing a 20 mW laser beam to separation channels in an array is achieved. Under the control of program, the sample injection and separation in multichannel can be achieved through six high-voltage modules' output. A CCD camera was used to monitor electrophoretic separations simultaneously in four channels with LIF detection, and the electropherograms can be plotted directly without reconstruction by additional software. Parallel multichannel electrophoresis of series biomolecules including amino acids, proteins, and nucleic acids was performed on this system and the results showed fine reproducibility.  相似文献   

4.
Luo Y  Zhang Q  Qin J  Lin B 《Electrophoresis》2007,28(24):4769-4771
Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.  相似文献   

5.
A novel method for performing in-column field-amplified sample stacking (FASS) in chip-based electrophoretic systems is presented. The methodology involves the use of a narrow sample channel (NSC) injector. NSC injectors allow sample plugs to be introduced directly into the separation channel, and subsequent stacking and separation can proceed without any need for leakage control. More importantly, stacking and separation occur in a single step negating the requirement for complex channel geometries and voltage switching to control sample plugs during the stacking procedure. The chip is composed of six paralleled systems. Using the NSC injector design, the number of reservoirs in the multiplexed chip is reduced to N + 2, where N is the number of paralleled systems. This design feature radically reduces the complexity in chip structures and associated chip operation. The approach is applied to the analysis of fluorescently labelled biogenic amines affording detection at concentrations down to 20 pM.  相似文献   

6.
The kinetics of transport phenomena generated by an electric field and leading to the formation of density gradients in suspensions of charged colloidal silica were studied by using various electrodes. The rate of approach to a steady-state density gradient was found to be much higher when using metallic electrodes (Cu, Fe, and Pt) in comparison with graphite (C) electrodes. Nevertheless, the initial rate with C electrodes was substantially increased by the addition of hydroquinone-quinone because the redox reactions, necessary for electrode-electrolyte current transfer, occur at lower potential compared with the electrolysis of water. On the other hand, the products of oxidation of hydroquinone which accumulate in the system bring about an important decrease of the zeta potential of silica particles and progressive deceleration of their electrophoretic mobility. A detailed study was carried out, by using thin-layer isoperichoric focusing, UV-vis spectrophotometry, and voltamperometry, to explain the observed phenomena which can interfere in electric polarization or focusing field-flow fractionation. Copyright 2000 Academic Press.  相似文献   

7.
The review provides a comprehensive survey of the recent applications of contact and contactless conductivity detection in capillary electrophoretic and chip electrophoretic analyses of a broad scale of compounds, from low-molecular-mass highly mobile small inorganic and organic ions, via medium-molecular-mass peptides and oligo- and polynucleotides up to high-molecular-mass biopolymers, proteins and nucleic acids fragments. The review presents also the recent developments in the construction of different types of conductivity detectors (detectors with galvanic contact of the sensing electrodes with the BGE and sample components, contactless conductivity detectors with capacitively coupled tubular and semitubular electrodes and combined conductivity/optical detectors) applied in the capillary electromigration methods performed in classical fused silica, polytetrafluorethylene, and polyetheretherketone capillaries or on glass and polymethylmethacrylate microchips. In addition, the principle and theoretical bases of conductivity detection in capillary electromigration techniques, zone electrophoresis, ITP, micellar EKC, and electrochromatography are briefly described.  相似文献   

8.
Lin CC  Lee GB  Chen SH 《Electrophoresis》2002,23(20):3550-3557
Automation of electrophoretic microchips for sequential analysis of different samples is demonstrated. This system used an autosampler, which was on-line connected to the microchip and the whole process including sample loading and injection, analysis and data acquisition as well as washing were all automated. Rhodamin B at different concentrations was first loaded into a hydrodynamic flow stream by an autosampler, delivered to the microchip, and then sequentially injected into the electrophoretic microchannel for analysis and detection. Automation was achieved by running two independent programs, one for sample loading by an autosampler and the other one for electrophoretic injection by voltage switching, on the same computer. Using this sampling chip, each loaded volume (0.2-1 microL) can be injected for dozens of electrophoretic analyses (1-10 nL for each injection). The variances caused by the external connections, which did not affect the electrophoretic analysis but would cause band broadening of the loaded sample in the hydrodynamic flow stream, were theoretically deduced. Results indicate that the dead volume (approximately 300 nL) due to the connection fitting on the chip could lead to dilution of the loaded sample by a factor of one when 0.2 microL of sample was loaded. Such a design allows sequential analysis of a series of samples while the running buffer is continuously pumped into the connection capillary as well as microchannels for washing between two loaded samples to minimize cross contamination without human intervention. Using this sampling chip, the required sample amount and handling time can be greatly reduced compared to the manual method.  相似文献   

9.
Morales MC  Lin H  Zahn JD 《Lab on a chip》2012,12(1):99-108
Sample pre-concentration can be a critical element to improve sensitivity of integrated microchip assays. In this work a converging Y-inlet microfluidic channel with integrated coplanar electrodes was used to investigate transverse DNA and protein migration under uniform direct current (DC) electric fields to assess the ability to concentrate a sample prior to other enzymatic modifications or capillary electrophoretic separations. Employing a pressure-driven flow to perfuse the microchannel, negatively charged samples diluted in low and high ionic strength buffers were co-infused with a receiving buffer of the same ionic strength into a main daughter channel. Experimental results demonstrated that, depending of the buffer selection, different DNA migration and accumulation dynamics were seen. Charged analytes could traverse the channel width and accumulate at the positive bias electrode in a low electroosmotic mobility, high electrophoretic mobility, high ionic strength buffer or migrated towards an equilibrium position within the channel in a high electroosmotic mobility, high electrophoretic mobility, low ionic strength buffer. The various migration behaviours are the result of a balance between the electrophoretic force and a drag force induced by a recirculating electroosmotic flow generated across the channel width due to the bounding walls. Under continuous flow conditions, DNA samples were concentrated several-fold by balancing these transverse electrokinetic forces. The electrokinetic trapping technique presented here is a simple technique which could be expanded to concentrate or separate other analytes as a preconditioning step for downstream processes.  相似文献   

10.
We evaluated a novel strategy for high-sensitivity DNA fragment analysis in a conventional glass double-T microfluidic chip. The microchip allows for a DNA on-channel concentration based on base stacking (BS) with a microchip capillary gel electrophoretic (MCGE) separation step in a poly(vinylpyrrolidone) (PVP) sieving matrix. Depending if low conductivity caused a neutralization reaction between the hydroxide ions and the run buffer component Tris+, the stacking of DNA fragments were processed in the microchip. Compared to a conventional MCGE separation with a normal electrokinetic injection, the peak heights of 50-2650-base pair (bp) DNA fragments on the MCGE-BS separation were increased 3.9-8.0-fold. When we applied the MCGE-BS method to the analysis of a clinical sample of bovine theileria after PCR reaction, the peak height intensity of the amplified 816-bp DNA fragment from the 18S rRNA of T. buffeli was enhanced 7.0-fold compared to that of the normal injection method.  相似文献   

11.
Under suitable conditions, a DNA molecule in solution will develop a strong electric dipole moment. This induced dipole allows the molecule to be manipulated with field gradients, in a phenomenon known as dielectrophoresis (DEP). Pure dielectrophoretic motion of DNA requires alternate current (AC) electric fields to suppress the electrophoretic effect of the molecules net charge. In this paper, we present two methods for measuring the efficiency of DEP for trapping DNA molecules as well as a set of quantitative measurements of the effects of strand length, buffer composition, and frequency of the applied electric field. A simple configuration of electrodes in combination with a microfluidic flow chamber is shown to increase the concentration of DNA in solution by at least 60-fold. These results should prove useful in designing practical microfluidic devices employing this phenomenon either for separation or concentration of DNA.  相似文献   

12.
Two types of biomolecules were tested in the comparison of usefulness of two ways of formation of the intermediate layers at electrodes: a 20‐nucleotide DNA sequence and glucose oxidase. Chronocoulometric, amperometric, electrochemical impedance and PM‐IRRAS experiments proved that the layers obtained by electroreduction of diazonium salts are much more stable and more efficient in the accumulation of biomolecules compared to layers obtained by self‐assembling of appropriate thiols.  相似文献   

13.
A novel microfabricated device for isoelectric focusing (IEF) incorporating an optimized electrospray ionization (ESI) tip was constructed on polycarbonate plates using laser micromachining. The IEF microchip incorporated a separation channel (50 micro x 30 micro x 16 cm), three fluid connectors, and two buffer reservoirs. Electrical potentials used for IEF focusing and electrospray were applied through platinum electrodes placed in the buffer reservoirs, which were isolated from the separation channel by porous membranes. Direct ESI-mass spectrometry (MS) using electrosprays produced directly from a sharp emitter "tip" on the microchip was evaluated. The results indicated that this design can produce a stable electrospray and that performance was further improved and made more flexible with the assistance of a sheath gas and sheath liquid. Error analysis of the spectral data showed that the standard deviation in signal intensity for an analyte peak was less than approximately 5% over 3 h. The production of stable electrosprays directly from microchip IEF device represents a step towards easily fabricated microanalytical devices. Microchannel IEF separations of protein mixtures were demonstrated for uncoated polycarbonate microchips. Direct microchannel IEF-ESI-MS was demonstrated using the microfabricated chip with an ion-trap mass spectrometer for characterization of protein mixtures.  相似文献   

14.
When the electrophoretic mobility of a particle in an electrolyte solution is measured, the obtained electrophoretic mobility values are usually converted to the particle zeta potential with the help of a proper relationship between the electrophoretic mobility and the zeta potential. For a particle with constant surface charge density, however, the surface charge density should be a more characteristic quantity than the zeta potential because for such particles the zeta potential is not a constant quantity but depends on the electrolyte concentration. In this article, a systematic method that does not require numerical computer calculation is proposed to determine the surface charge density of a spherical colloidal particle on the basis of the particle electrophoretic mobility data. This method is based on two analytical equations, that is, the relationship between the electrophoretic mobility and zeta potential of the particle and the relationship between the zeta potential and surface charge density of the particle. The measured mobility values are analyzed with these two equations. As an example, the present method is applied to electrophoretic mobility data on gold nanoparticles (Agnihotri, S. M.; Ohshima, H.; Terada, H.; Tomoda, K.; Makino, K. Langmuir 2009, 25, 4804).  相似文献   

15.
提出了一种基于电洗脱原理的核酸纯化回收芯片, 通过对芯片上电极进行适当的切换操作, 可一次完成核酸样品分离和纯化回收. 同时采用数值模拟的方法对纯化回收芯片管道的几何形状及电场分布进行了优化设计, 并进行了实验验证. 实验结果与模拟分析非常吻合, 证明优化设计达到了预期的效果.  相似文献   

16.
We present a novel means of transporting molecules in solution by applying a zero-time-average alternating motive force to the molecules, and perturbing the molecular drag coefficient synchronously with the applied force, thus causing a net drift in a direction determined by the phase of the alternating drag perturbation relative to the alternating force. We apply an electrophoretic form of the method to transport and concentrate DNA in a gel, such that all molecules migrate on average away from the nearest electrode and toward a central region. Since an electrode does not occupy this central region, this method presents the possibility of transporting and focusing DNA and other charged molecules in regions free from electrodes and the associated electrochemistry.  相似文献   

17.
We present a rapid gel electrophoretic chip, composed of 2.5% (w/v) acrylamide and 1% (w/v) agarose gel, for serum cholesterol determination using a photo lithography technique. After optimizations, we determined the lipoprotein concentration of standard serum using a conventional enzyme method. The serum was diluted, stained and loaded for 15 min onto the chip. After loading, the intensities of low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) bands separated at the chip were estimated using an image analyzer. The intensities of these bands corresponded to concentrations obtained from a standard enzyme-based method. The detected LDL-C and HDL-C concentrations were linear up to 146 mg dL(-1) and 53 mg dL(-1) respectively. Finally, we carried out the cholesterol analysis using real biological samples obtained from nine volunteers using our electrophoretic chip. The LDL-C and HDL-C levels detected using our chip correlated well with the results obtained using the conventional enzyme-based method r(2) = 0.98 and r(2) = 0.86 for LDL-C and HDL-C, respectively. Although our sample size is small and confined only to health volunteers, we have demonstrated that this proof-of-concept gel electrophoretic chip can determine lipoproteins, simultaneously.  相似文献   

18.
In this work, we explored a novel fabrication method to construct Au and Ag electrodes on chip, utilizing the different solubility of gold and silver in different etching solutions. KI-I2 etching solution and 50% HNO3 were chosen to dissolve the metal layers alternatively. Planar electrodes with gold and silver could be simultaneously and accurately patterned on chip using photolithographic technique. The as-prepared electrode could be directly served as integrated three-electrode system for electrochemical measurement. Based on it, a sensing strategy has been carried out using home-made electrochemical sensing (ECS) chip, which depended on the competition of double strand DNA and Hg(II)-mediated T–T base pairs (T-Hg(II)-T). Actually, a mercury specific oligonucleotide (MSO) was immobilized onto the thus-fabricated gold working electrode and employed as the sensing element. Chronocoulometry (CC) was chosen to monitor the differences of surface charge volume and quantify the concentrations of Hg(II) ions with a low detection limit down to 1 nM. Therefore, a facile method to fabricate Au and Ag electrodes has been demonstrated to simplify the production of ECS chip. The ECS chip was finally used for constructing an effective sensing platform for sensitive Hg(II) determination, which held promising potential for designing ECS chip in lab-on-a-chip device or point-of-care diagnosis.  相似文献   

19.
Polymer insulating materials used in radioactive environment can be degraded by discharge which is induced by surface charge accumulation. Hence the stability of the electrical insulation is dependent upon the dynamic behavior of surface charge that may be changed by irradiation. In this paper, polybutylene naphthalate was employed as test sample to investigate the effects of gamma-ray irradiation on the charge behavior. The samples were previously irradiated in air up to 100 kGy and then up to 1000 kGy with dose rate of 10 kGy/h using a 60Co gamma-source. The experiment was carried out under a negative dc stress between two aluminum plate electrodes. An electrostatic probe was designed to measure the charge density. Obtained results show that with the increase of the total dose of the irradiation, both the capacity of surface charge and the rate of charge decay decrease. It is proposed that the charging behavior depends upon the density of localized surface states that is reduced by the radiation induced cross-linking reactions. The decay is caused by the recombination of surface charge with ions of the opposite sign in air.  相似文献   

20.
A proof of concept procedure for the electroaddressable covalent immobilization of DNA and protein on arrayed electrodes along with simultaneous detection of multiple bioagents in the same sample solution is described. Carboxyphenyldiazonium was selectively deposited onto five of nine individually addressable electrodes in an array via bias assisted assembly. Amine functionalized DNA probes were covalently coupled to the carboxyl surface via carbodiimide chemistry. This was followed by the covalent immobilization of diazonium-antibody conjugates into the remaining four electrodes via cyclic voltammetry. Simultaneous electrochemical detection of a DNA sequence related to the breast cancer BRCA1 gene and the human cytokine protein interleukin-12, which is a substantial component in the immune system response and attack of tumor cells, is reported. These results demonstrate the possibility of selective patterning of diverse biomolecules on a single device and may have significant implications for future development of microarrays and biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号