首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pyrolysis of pine needles was carried out in a semi-batch reactor. The effects of pyrolysis parameters such as temperature (350–650 °C), heating rate (10 and 50 °C min?1), nitrogen flow rate (50–200 cm3 min?1) and biomass particle size (0.25–1.7 mm) were examined on products yield. Maximum bio-oil yield of 43.76% was obtained at pyrolysis temperature of 550 °C with a heating rate of 50 °C min?1, nitrogen flow rate of 100 cm3 min?1 for biomass particle size of 0.6 < d p < 1 mm. The characterization of pyrolysis products (bio-oil, bio-char) has been made through different instrumental methods like Fourier transform infrared spectroscopy, gas chromatography–mass spectrometry, nuclear magnetic resonance spectroscopy (1H NMR), X-ray powder diffraction, field emission scanning electron microscope and Brunauer–Emmett–Teller surface area analysis. The empirical formula of the bio-oil and bio-char was found as CH1.47O0.36N0.005 and CH0.56O0.28N0.013 with heating value of 26.25 and 25.50 MJ kg?1, respectively. Results show that bio-oil can be potentially valuable as a renewable fuel after upgrading and can be used as a feedstock for valuable chemicals production. The properties of bio-char reveal that it can be used as solid fuels, as a cheap adsorbent and as a feedstock for activated carbon production.  相似文献   

2.
Study of carbon black obtained by pyrolysis of waste scrap tyres   总被引:1,自引:0,他引:1  
Waste scrap tyres were thermally decomposed under various conditions. Decompositions were followed by the TGA method. Specific heating regimes were tested to obtain optimal structural properties of resulting pyrolytic carbon black produced by pyrolysis of scrap tyres and the process was characterized in temperature interval from 380 to 1,200 °C and heating rate 10, 20 and 50 °C min?1 under nitrogen atmosphere. The original scrap tyres and pyrolytic carbon black were characterized by Raman and Fourier transform infrared spectroscopy methods. Textural properties were also determined. Effect of temperature and heating rate on process of pyrolysis of scrap tyres was observed. Shifting of temperature of maximum pyrolysis rate to lower value and spreading of DTG peak is caused by increasing heating rate. Temperature 570 °C was sufficient for total scrap tyres pyrolysis. Graphitic and disordered structure was distinguished in the formed carbon black by Raman spectroscopy. With increasing temperature, heating rate and weight loss, the amount of the graphitic structure was reduced at the expense of disordered structure. Destruction of nonporous scrap tyres and formation of porous structure took place at higher temperature. Porous carbon black is formed above 380 °C, specific surface area increased up to 88 m2 g?1 .  相似文献   

3.
Jerusalem artichoke has great potential as future feedstock for bioenergy production because of its high tuber yield (up to 90 t ha?1), appropriate biomass characteristics, low input demand, and positive environmental impact. The pyrolytic and kinetic characteristics of Jerusalem artichoke tubers were analyzed at heating rates of 5, 10, 20 and 30 °C min?1. TG and DTG curves in an inert (nitrogen) atmosphere suggested that there were three distinct stages of mass loss and the major loss occurs between about 190–380 °C. Heating rate brought a lateral shift toward right in the temperature. And, it not only affects the temperature at which the highest mass loss rate reached, but also affect the maximum rate of mass loss. The distributed activation energy model (DAEM) was used to study the pyrolysis kinetics and provided reasonable fits to the experimental data. The activation energy (E) of tubers ranged from 146.40 to 232.45 kJ mol?1, and the frequency factor (A) changed greatly corresponding to E values at different mass conversion.  相似文献   

4.
Thermal behavior of green clay samples from Kunda and Arumetsa deposits (Estonia) as potential raw materials for production of ceramics and the influence of previously fired clay and hydrated oil shale ash additives on it were the objectives of this research. Two different ashes were used as additives: the electrostatic precipitator ash from the first field and the cyclone ash formed, respectively, at circulating fluidized bed combustion (temperatures 750–830 °C) and pulverized firing (temperatures 1,200–1,400 °C) of Estonian oil shale at Estonian Power Plant. The experiments on a Setaram Labsys Evo 1600 thermoanalyzer coupled with Pfeiffer OmniStar Mass Spectrometer by a heated transfer line were carried out under non-isothermal conditions up to 1,050 °C at the heating rate of 5 °C min?1 in an oxidizing atmosphere containing 79 % of Ar and 21 % of O2. Standard 100 µL Pt crucibles were used, the mass of samples was 50 ± 0.5 mg, and the gas flow 60 mL min?1. The results obtained indicate the complex character of transformations and show certain differences in the thermal behavior of Arumetsa and Kunda clays and their mixtures with oil shale ashes depending on the chemical and mineralogical composition of the clays as well as of the oil shale ashes studied.  相似文献   

5.
Thermogravimetric (TG) data of oil sand obtained at Engineering Research Center of Oil Shale Comprehensive Utilization were studied to evaluate the kinetic parameters for Indonesian oil sand samples. Experiments were carried out at heating rates of 5, 15, and 25 °C min?1 in nitrogen, 10, 20, and 50 °C min?1 in oxygen atmosphere, respectively. The extent of char combustion was found out by relating TG data for pyrolysis and combustion with the ultimate analysis. Due to distinct behavior of oil shale during pyrolysis, TG curves were divided into three separate events: moisture release, devolatilization, and evolution of fixed carbon/char, where for each event, kinetic parameters, based on Arrhenius theory, were calculated. Coats–Redfern method, Flynn–Wall–Ozawa method, and distributed activation energy model method have been used to determine the activation energies of degradation. The methods are compared with regard to their characteristics and the ease of interpretation of the thermal kinetics. Activation energies of the samples were determined by three different methods and the results are discussed.  相似文献   

6.
A quantitative method has been developed and validated for the determination of 2-arachidonoylglycerol (2-AG) in hairless guinea pig plasma by liquid chromatographic-electrospray ionization mass spectrometry. The analytes were extracted from the plasma samples of guinea pig by a single step liquid extraction technique using acetonitrile. The chromatographic separation was conducted on a C18 column using a gradient mobile phase consisting of methanol and water at a flow rate of 0.3 mL min?1. The analytes were quantified by positive electrospray ionization mass spectrometry with selected ion monitoring mode of m/z 401. The limit of detection for 2-AG was 0.5 ng mL?1. This method required only simple processing of the samples to prevent the isomerization of 2-AG during sampling and handling and could be applied to determine the plasma concentration profiles in hairless guinea pigs. The volume of distribution at steady state (V ss), total plasma clearance (CL) and half life (t 1/2β) of 2-AG in hairless guinea pigs were 0.21 ± 0.025 L kg?1, 9.2 ± 1.5 L h?1 kg?1, and 17.7 ± 3.8 min, respectively.  相似文献   

7.
Acetone, hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) are easily to produce triacetone triperoxide (TATP), which is an organic peroxide and a hazardous material. The aim of this study was to analyze the thermal hazard of various fire-extinguishing reagents mixed with TATP. Various functions of fire-extinguishing reagents may have different extent of reactions with TATP. Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TG) were used to detect the thermal hazard and to evaluate the effect of fire-extinguishing reagents mixed with TATP under fire condition. TATP decomposed rapidly and final decomposition was calculated before 200 °C. Therefore, heat of decomposition (ΔH d) of TATP was evaluated to be 2,500 J g?1 by DSC under 2 °C min?1 of heating rate. H2O2, acetone, and H2SO4 should not be mixed in a wastewater drum. TATP decomposed at 50 °C by DSC using O2 of reaction gas that is an exothermic reaction and can decompose a large amount of heat. Therefore, TATP was applied to assess thermal pyrolysis by DSC employing N2 of reaction gas that can analyze an endothermic reaction. Mass loss percentage of TATP was evaluated to be 100 % when the ambient temperature exceeds 110 °C by TG using O2 or N2 of reaction gas.  相似文献   

8.
Macrocystis pyrifera is one important marine macro-algae, while its residues produced by industrial alginate extraction is a hot potato. To figure out whether its residue is suitable for pyrolysis for biofuel, the pyrolytic characteristics and kinetics of macro-algae M. pyrifera residue was investigated using thermogravimetric method from 50 to 800 °C in an inert argon atmosphere at different heating rates of 5, 10, 20, and 30 °C min?1. The activation energy and pre-exponential factor was calculated by Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, and Popescu methods, and the kinetic mechanism was deduced by Popescu method. The results showed that the primary devolatilization stage of M. pyrifera residue can be described by Jander function $ \left(\left[ {1 - \left( {1 - \alpha } \right)^{1/3} } \right]^{2}\right) $ . The average activation energy of M. pyrifera residue was 222.4 kJ mol?1. The results suggested that the experimental results and kinetic parameters provided useful information for the design of pyrolytic processing system using M. pyrifera residue as feedstock.  相似文献   

9.
An in situ pyrolysis process of high moisture content lignite in an autogenerated steam agent was proposed. The aim is to utilize steam autogenerated from lignite moisture as a reactant to produce fuel gas and additional hydrogen. Thermogravimetric analysis revealed that mass loss and maximum mass loss rate increased with the rise of heating rates. The in situ pyrolysis process was performed in a screw kiln reactor to investigate the effects of moisture content and reactor temperature on product yields, gas compositions, and pyrolysis performance. The results demonstrated that inherent moisture in lignite had a significant influence on the product yield. The pyrolysis of L R (raw lignite with a moisture content of 36.9 %, wet basis) at 900 °C exhibited higher dry yield of 33.67 mL g?1 and H2 content of 50.3 vol% than those from the pyrolysis of the predried lignite. It was also shown that increasing reaction temperature led to a rising dry gas yield and H2 yield. The pyrolysis of L R showed the maximum dry yield of 33.7 mL g?1 and H2 content of 53.2 vol% at 1,000 °C. The LHV of fuel gas ranged from 18.45 to 14.38 MJ Nm?3 when the reactor temperature increased from 600 to 1,000 °C.  相似文献   

10.
Thermal degradation behavior and kinetics of a biomass waste material, namely walnut shell, were investigated by using a thermogravimetric analyzer. The desired final temperature of 800 °C was achieved at three different heating rates (2, 10, and 15 °C min?1) under nitrogen flow (50 mL min?1). The TG and DTG curves exhibited three distinct zones that can mainly be attributed to removal of water, decomposition of hemicellulose + cellulose, and decomposition of lignin, respectively. The kinetic parameters (activation energy, pre-exponential factor, and reaction order) of active pyrolysis zone were determined by applying Arrhenius, Coats?CRedfern, and Horowitz?CMetzger methods to TG results. The values of activation energies were found to be between 45.6 and 78.4 kJ mol?1. There was a great agreement between the results of Arrhenius and Coats?CRedfern methods while Horowitz?CMetzger method yielded relatively higher results. The existence of kinetic compensation effect was evident.  相似文献   

11.
Co-pyrolysis is one of the most promising options for the utilization of coal and biomass. Coal/biomass blends were prepared using Yilan subbituminous (YL) and corncob and the mass ratios of coal in mixtures varied between 0 and 100 %. Co-pyrolysis characteristics were investigated in a thermogravimetric analyzer from 303 to 973 K under the nitrogen flow of 100 mL min?1. The co-pyrolysis residues were less than the sum simply added of the solid yields of individuals. With heating rate increased from 10 to 40 K min?1, the residues decreased more severely compared to the expected under various blending ratios. For fast pyrolysis in fluidized-bed reactor, gas volumes and char yields of co-pyrolysis showed a significant linearity. But pyrolysis-oil yields were higher than the expected from the additive model when the YL blending ratios were less than 60 %. The co-pyrolysis evolved more H2, CH4, C2 + C3, and less CO than an additive pyrolysis process of individual fuel. The GC/MS results indicated that co-pyrolysis-oil contained more alcohols, ketones, aldehydes, or acids than that of individual fuel. All of that suggested the H/OH in volatiles produced from rapid pyrolysis of biomass transferred to the radicals of coal pyrolysis. The possible reaction mechanism also was provided in the paper.  相似文献   

12.
Comparative studies on the Hailar lignite pyrolysis/gasification characteristics at N2/CO2 atmosphere and the influence of inherent mineral matters, external ash and pyrolysis temperature on its reactivity during gasification at CO2 atmosphere were conducted by non-isothermal thermogravimetric analysis, FTIR, and X-ray diffraction (XRD) analysis. Thermogravimetric test results show that the atmosphere of N2 or CO2 almost has no effects on the pyrolysis behavior, and the gasification reaction under CO2 atmosphere occurs over 943?K at the heating rate of 40?K?min?1. The external ash prepared at 1173 and 1223?K shows a certain catalytic effect on promoting the gasification reaction, although the inherent mineral matters of Hailar lignite are found in stronger catalytic effects on gasification than the external ash. The lignite gasification reactivity decreases with increasing pyrolytic temperature between 1073 and 1273?K.  相似文献   

13.
Thermokinetic behaviour of SnCl2 was investigated using differential scanning calorimetry and thermogravimetry techniques under non-isothermal conditions in air, complemented by electron microscopy and Raman spectroscopy. According to the results obtained, the oxidation of SnCl2 at the heating rates of 5 and 100 °C min?1 leads to the in situ formation of highly crystalline SnO2 nanostructures in the form of nanoparticles and nanorods, respectively. The oxidation of SnCl2 was found to be a liquid–solid (LS) phase transition at the heating rates equal or lower than 10 °C min?1 and a gas–solid phase transition at the heating rates equal or greater than 20 °C min?1. The activation energy of melting, vaporisation and LS oxidation of SnCl2 was determined to be 198, 93 and 91 kJ mol?1, respectively.  相似文献   

14.
Four oil shale samples with different amounts of organic and mineral matter were analysed through non-isothermal thermogravimetric analysis using a heating rate of 50 °C min?1 in nitrogen. The goal of the paper is to study the supposed catalytic effect of the indigenous and removed minerals. The samples contained 30, 49, 70 and 90% of organic matter, respectively. X-ray diffraction analysis was used to identify the minerals in the samples. Thermal analysis experiments were carried out up to temperatures of 850 °C in pyrolysis conditions. The mass loss data were used to study the variations in the conversion profiles of the organic matter depending on the content of the mineral matter. The obtained data and the comparison of the sample composition show that the effect of the mineral matter amount on the course of the pyrolysis processes is insignificant.  相似文献   

15.
A H3PW12O40/ZrO2 catalyst for effective dimethyl carbonate (DMC) formation via methanol carbonation was prepared using the sol–gel method. X-ray photoelectron spectra showed that reactive and dominant (63%) W(VI) species, in WO3 or H2WO4, enhanced the catalytic performances of the supported ZrO2. The mesoporous structure of H3PW12O40/ZrO2 was identified by nitrogen adsorption–desorption isotherms. In particular, partial sintering of catalyst particles in the duration of methanol carbonation caused a decrease in the Brunauer–Emmett–Teller surface area of the catalyst from 39 to 19 m2/g. The strong acidity of H3PW12O40/ZrO2 was confirmed by the desorption peak observed at 415 °C in NH3 temperature-programmed desorption curve. At various reaction temperatures (T?=?110, 170, and 220 °C) and CO2/N2 volumetric flow rate ratios (CO2/N2?=?1/4, 1/7, and 1/9), the calculated catalytic performances showed that the optimal methanol conversion, DMC selectivity, and DMC yield were 4.45, 89.93, and 4.00%, respectively, when T?=?170 °C and CO2/N2?=?1/7. Furthermore, linear regression of the pseudo-first-order model and Arrhenius equation deduced the optimal rate constant (4.24?×?10?3 min?1) and activation energy (Ea?=?15.54 kJ/mol) at 170 °C with CO2/N2?=?1/7 which were favorable for DMC formation.  相似文献   

16.
The thermally stimulated depolarization current (TSDC) technique has been used to study the slow molecular mobility of polysulfone in the glassy state and in the glass transformation region, i.e., in the temperature ranging from ?155 to 183 °C. Since the polysulfone is a rigid polymer without polar side-groups, a broad and low-intensity secondary relaxation was detected in the temperature region from ?120 °C up to the glass transition; the activation energy of the motional modes of this secondary relaxation is in the range between 35 and 100 kJ mol?1. The glass transition temperature of polysulfone provided by the TSDC technique is T M = T g = 176 °C (at 4 °C min?1). The relaxation time at this temperature is τ(T g) = 33 s and the fragility index was found to be m = 91. Our results are compared with literature values obtained by dynamic mechanical analysis and by dielectric relaxation spectroscopy. The amorphous polysulfone was also characterized by DSC; a glass transition signal with an onset at T on = 185.5 ± 0.3 °C (heating rate 10 °C min?1) was detected, with ΔC p = 0.21 ± 0.01 J g?1 °C?1.  相似文献   

17.
A very sensitive and selective flow injection on-line determination method of thorium (IV) after preconcentration in a minicolumn having XAD-4 resin impregnated with N-benzoylphenylhydroxylamine is described. Thorium (IV) was selectively adsorbed from aqueous solution of pH 4.5 in a minicolumn at a flow rate of 13.6 mL min?1, eluted with 3.6 mol dm?3 HCl (5.6 mL min?1), mixed with arsenazo-III (0.05% in 3.6 mol dm?3 HCl stabilized with 1% Triton X-100, 5.6 mL min?1) at confluence point and taken to the flow through cell of spectrophotometer where its absorbance was measured at 660 nm. Peak height was used for data analyses. The preconcentration factors obtained were 32 and 162, detection limits of 0.76 and 0.150 ??g L?1, sample throughputs of 40 and 11 h?1 for preconcentration times of 60 and 300 s, respectively. The tolerance levels for Zr(IV) and U(VI) metal ions is increased to 50-folds higher concentration to Th(IV). The proposed method was applied on different spiked tap water, sea water and biological sample and good recovery was obtained. The method was also applied on certified reference material IAEA-SL1 (Lake Sediment) for the determination of thorium and the results were in good agreement with the reported value.  相似文献   

18.
A simple and specific high performance liquid chromatographic (HPLC) method with UV detection using picroside II as the internal standard was developed and validated to determine the concentration of paeoniflorin in rat plasma and study its pharmacokinetics after an single intravenous administration of 40 mg kg?1 paeoniflorin to Wistar rats. The analytes of interest were extracted from rat plasma samples by ethyl acetate after acidification with 0.05 mol L?1 NaH2PO4 solution (pH 5.0). Chromatographic separation was achieved on an Agilent XDB C18 column (250 × 4.6 mm I.D., 5 μm) with a Shim-pack GVP-ODS C18 guard column (10 × 4.6 mm I.D., 5 μm) using a mobile phase consisting of acetonitrile–water–acetic acid (18:82:0.4, v/v/v) at a flow rate of 1.0 mL min?1. The UV detection was performed at a wavelength of 230 nm. The linear calibration curves were obtained in the concentration range of 0.05–200.0 μg mL?1 in rat plasma with the lower limit of quantification (LLOQ) of 0.05 μg mL?1. The intra- and inter-day precisions in terms of % relative standard deviation (RSD) were lower than 5.7 and 8.2% in rat plasma, respectively. The accuracy in terms of % relative error (RE) ranged from ?1.9 to 2.6% in rat plasma. The extraction recoveries of paeoniflorin and picroside II were calculated to be 69.7 and 56.9%, respectively. This validated method was successfully applied to the pharmacokinetic study of a new paeoniflorin frozen dry power formulation. After single intravenous administration, the main pharmacokinetic parameters t 1/2, AUC0-∞, CLTOT, V Z, MRT0-∞ and V ss were 0.739 ± 0.232 h, 43.75 ± 6.90 μg h mL?1, 15.50 ± 2.46 L kg?1 h?1, 1.003 ± 0.401 L kg?1, 0.480 ± 0.055 h and 0.444 ± 0.060 L kg?1, respectively.  相似文献   

19.
Poly (N-isopropylacrylamide)/poly (2-acrylamido-2-methylpropanesulfonic acid) (PNIPAAm/PAMPS) nanofibers was prepared using the electrospinning technique. The electrospinning process parameters such as solution concentration, voltage, receiver distance and flow rate were determined by the orthogonal experiments. The appropriate electrospinning parameters were 7.0% of solution concentration, 10.0 kV of voltage, 20 cm of distance and 3.1 μL·min?1 of flow rate, respectively. The major factor affecting the nanofibers diameter was the solution concentration and the diameter increased with the solution concentration. The Fourier-transform infrared spectroscopy (FTIR) was conducted to characterize the structure of the components for electrospinning. Scanning electron microscopy (SEM) was taken to observe the morphology, and the contact angle (CA) measuring was carried out to determine the wettability of the nanofibers with temperatures. The results of SEM observation showed that the surfaces of nanofibers were smooth with uniform fibrous diameters and without the formation of beads. The CA detections showed that the electrospun PNIPAAm/PAMPS nanofibers exhibited thermo-sensitivity of hydrophilicity at 20°C and hydrophobicity at 40°C.  相似文献   

20.
In this study, the use of the organic fraction of municipal solid waste as an abundant and low-cost raw material for producing activated carbon was investigated. For this purpose, ZnCl2 was used as a chemical activation agent and the carbonization process took place at 800 °C in N2 atmosphere. Seven sorbents were prepared by chemical activation (pyrolysis under N2 atmosphere at temperature of 800 °C after impregnation with ZnCl2) with different ratios of ZnCl2. The optimum ratio of organic fraction of municipal solid waste to ZnCl2 was inspected via methylene blue number and iodine number (ASTM Designation: D4607–94). The results showed that the adsorbent with 60 % ZnCl2/raw material was the most appropriate one with a satisfactory adsorption capacity, 112.4 mg g?1 for methylene blue and 134.0 mg g?1 for iodine. In addition, the structural analysis of this sorbent was performed using FT-IR, BET surface area, SEM–EDX and thermal analysis. Application of this sorbent to remove Cr(VI) from wastewater was studied to find an adsorption capacity of 66.7 mg g?1. The experimental adsorption equilibrium data were fitted to Langmuir adsorption model with an acceptable adsorption capacity of 66.7 mg g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号