首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Let \(\mathcal {L}\) be a \(\mathcal {J}\)-subspace lattice on a Banach space X over the real or complex field \(\mathbb {F}\) with dimX ≥ 3 and let n ≥ 2 be an integer. Suppose that dimK ≠ 2 for every \(K\in \mathcal {J}{(\mathcal L)}\) and \(L: \text {Alg}\, \mathcal {L}\rightarrow \text {Alg}\,\mathcal {L}\) is a linear map. It is shown that L satisfies \({\sum }_{i=1}^{n}p_{n} (A_{1}, \ldots , A_{i-1}, L(A_{i}), A_{i+1}, \ldots , A_{n})=0\) whenever p n (A 1,A 2,…,A n ) = 0 for \(A_{1},A_{2},\ldots ,A_{n}\in \text {Alg}\,\mathcal {L}\) if and only if for each \(K\in \mathcal {J}(\mathcal {L})\), there exists a bounded linear operator \(T_{K}\in \mathcal {B}(K)\), a scalar λ K and a linear functional \(h_{K}: \text {Alg}\,\mathcal {L}\rightarrow \mathbb {F}\) such that L(A)x = (T K A ? A T K + λ K A + h K (A)I)x for all xK and all \(A\in \text {Alg}\,\mathcal {L}\). Based on this result, a complete characterization of linear n-Lie derivations on \(\text {Alg}\,\mathcal {L}\) is obtained.  相似文献   

2.
Let \(\mathcal {A}\subset \left( {\begin{array}{c}[n]\\ r\end{array}}\right) \) be a compressed, intersecting family and let \(X\subset [n]\). Let \(\mathcal {A}(X)=\{A\in \mathcal {A}:A\cap X\ne \emptyset \}\) and \(\mathcal {S}_{n,r}=\left( {\begin{array}{c}[n]\\ r\end{array}}\right) (\{1\})\). Motivated by the Erd?s–Ko–Rado theorem, Borg asked for which \(X\subset [2,n]\) do we have \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\) for all compressed, intersecting families \(\mathcal {A}\)? We call X that satisfy this property EKR. Borg classified EKR sets X such that \(|X|\ge r\). Barber classified X, with \(|X|\le r\), such that X is EKR for sufficiently large n, and asked how large n must be. We prove n is sufficiently large when n grows quadratically in r. In the case where \(\mathcal {A}\) has a maximal element, we sharpen this bound to \(n>\varphi ^{2}r\) implies \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\). We conclude by giving a generating function that speeds up computation of \(|\mathcal {A}(X)|\) in comparison with the naïve methods.  相似文献   

3.
For a local number field K with the ring of integers \( {\mathcal{O}_K} \), the residue field \( {\mathbb{F}_q} \), and uniformizing π, we consider the Lubin–Tate tower \( {K_\pi } = \bigcap\limits_{n \geqslant 0} {{K_n}} \), where K n = K(π n ), f(π0) = 0, and f(π n +1) = π n . Here f(X) defines the endomorphism [π] of the Lubin–Tate group. If q ≠ 2, then for any formal power series \( g(X) \in {\mathcal{O}_K}\left[ {\left[ X \right]} \right] \) the following equality holds: \( \sum\limits_{n = 0}^\infty {{\text{SP}}{{{K_n}} \mathord{\left/{\vphantom {{{K_n}} K}} \right.} K}} g\left( {{\pi_n}} \right) = - g(0) \). One has a similar equality in the case q = 2.  相似文献   

4.
Let X be a smooth complex projective variety of dimension n and \(\mathcal {L}\) an ample line bundle on it. There is a well known bijective correspondence between the isomorphism classes of polystable vector bundles E on X with \(c_{1}(E) = 0 = c_{2} (E) \cdot c_{1} (\mathcal {L})^{n-2}\) and the equivalence classes of unitary representations of π1(X). We show that this bijective correspondence extends to smooth orbifolds.  相似文献   

5.
Exact distribution of MLE of covariance matrix in a GMANOVA-MANOVA model   总被引:2,自引:0,他引:2  
For a GMANOVA-MANOVA model with normal error: Y = XB1Z1 T B2Z2 T E, E- Nq×n(0, In (?) ∑), the present paper is devoted to the study of distribution of MLE, ∑, of covariance matrix ∑. The main results obtained are stated as follows: (1) When rk(Z) -rk(Z2) ≥ q-rk(X), the exact distribution of ∑ is derived, where z = (Z1,Z2), rk(A) denotes the rank of matrix A. (2) The exact distribution of |∑| is gained. (3) It is proved that ntr{[S-1 - ∑-1XM(MTXT∑-1XM)-1MTXT∑-1]∑}has X2(q_rk(x))(n-rk(z2)) distribution, where M is the matrix whose columns are the standardized orthogonal eigenvectors corresponding to the nonzero eigenvalues of XT∑-1X.  相似文献   

6.
The paper considers cubature formulas for calculating integrals of functions f(X), X = (x 1, …, x n ) which are defined on the n-dimensional unit hypercube K n = [0, 1] n and have integrable mixed derivatives of the kind \(\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)\), 0 ≤ α j ≤ 2. We estimate the errors R[f] = \(\smallint _{K^n } \) f(X)dX ? Σ k = 1 N c k f(X(k)) of cubature formulas (c k > 0) as functions of the weights c k of nodes X(k) and properties of integrable functions. The error is estimated in terms of the integrals of the derivatives of f over r-dimensional faces (rn) of the hypercube K n : |R(f)| ≤ \(\sum _{\alpha _j } \) G j )\(\int_{K^r } {\left| {\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)} \right|} \) dX r , where coefficients G j ) are criteria which depend only on parameters c k and X(k). We present an algorithm to calculate these criteria in the two- and n-dimensional cases. Examples are given. A particular case of the criteria is the discrepancy, and the algorithm proposed is a generalization of those used to compute the discrepancy. The results obtained can be used for optimization of cubature formulas as functions of c k and X(k).  相似文献   

7.
Let \(\mathcal{F}\) be a class of groups and G a finite group. We call a set Σ of subgroups of G a G-covering subgroup system for  \(\mathcal{F}\) if \(G\in \mathcal{F}\) whenever \(\Sigma \subseteq \mathcal{F}\). Let p be any prime dividing |G| and P a Sylow p-subgroup of G. Then we write Σ p to denote the set of subgroups of G which contains at least one supplement to G of each maximal subgroup of P. We prove that the sets Σ p and Σ p ∪Σ q , where qp, are G-covering subgroup systems for many classes of finite groups.  相似文献   

8.
Let {X, X n ; n?≥?1} be a sequence of i.i.d. random variables taking values in a real separable Hilbert space \((\textbf{H},\|\cdot\|)\) with covariance operator Σ. Set \(S_n=\sum_{i=1}^nX_i,\) n?≥?1. We prove that for 1?p?r?>?1?+?p/2,
$\begin{array}{lll} &;\lim\limits_{\varepsilon\searrow0}\varepsilon^{(2r-p-2)/(2-p)}\sum\limits_{n=1}^\infty n^{r/p-2-1/p}{\mbox{\rm{\textsf{E}}}}\{\|S_n\|-\sigma\varepsilon n^{1/p}\}_+\\&;\quad\qquad\qquad\qquad=\sigma^{-(2r-2-p)/(2-p)}\frac{p(2-p)}{(r-p)(2r-p-2)}{\mbox{\rm{\textsf{E}}}}\|Y\|^{2(r-p)/(2-p)}, \end{array}$
where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator Σ, and σ 2 is the largest eigenvalue of Σ.
  相似文献   

9.
Let x 0 be a nonzero vector in \({\mathbb{C}^{n}}\) , and let \({U\subseteq \mathcal{M}_{n}}\) be a domain containing the zero matrix. We prove that if φ is a holomorphic map from U into \({\mathcal{M}_{n}}\) such that the local spectrum of TU at x 0 and the local spectrum of φ(T) at x 0 have always a common value, then T and φ(T) have always the same spectrum, and they have the same local spectrum at x 0 a.e. with respect to the Lebesgue measure on U. If \({\varphi \colon U\rightarrow \mathcal{M}_{n}}\) is holomorphic with φ(0) = 0 such that the local spectral radius of T at x 0 equals the local spectral radius of φ(T) at x 0 for all TU, there exists \({\xi \in \mathbb{C}}\) of modulus one such that ξT and φ(T) have the same spectrum for all T in U. We also prove that if for all TU the local spectral radius of φ(T) coincides with the local spectral radius of T at each vector x, there exists \({\xi \in \mathbb{C}}\) of modulus one such that φ(T) = ξT on U.  相似文献   

10.
Let X be a complex smooth projective variety, and G a locally free sheaf on X. We show that there is a one-to-one correspondence between pairs (Λ, Ξ), where Λ is a sheaf of almost polynomial filtered algebras over X satisfying Simpson’s axioms and \( \equiv :Gr\Lambda \to Sym \bullet _{\mathcal{O}_X } \mathcal{G}\) is an isomorphism, and pairs (L, Σ), where L is a holomorphic Lie algebroid structure on \(\mathcal{G}\) and Σ is a class in F 1 H 2(L, ?), the first Hodge filtration piece of the second cohomology of L.As an application, we construct moduli spaces of semistable flat L-connections for any holomorphic Lie algebroid L. Particular examples of these are given by generalized holomorphic bundles for any generalized complex structure associated to a holomorphic Poisson manifold.  相似文献   

11.
We prove the conditional exponential stability of the zero solution of the nonlinear differential system
$$\dot y = A(t)y + f(t,y),{\mathbf{ }}y \in R^n ,{\mathbf{ }}t \geqslant 0,$$
with L p -dichotomous linear Coppel-Conti approximation .x = A(t)x whose principal solution matrix X A (t), X A (0) = E, satisfies the condition
$$\mathop \smallint \limits_0^t \left\| {X_A (t)P_1 X_A^{ - 1} (\tau )} \right\|^p d\tau + \mathop \smallint \limits_t^{ + \infty } \left\| {X_A (t)P_2 X_A^{ - 1} (\tau )} \right\|^p d\tau \leqslant C_p (A) < + \infty ,{\mathbf{ }}p \geqslant 1,{\mathbf{ }}t \geqslant 0,$$
where P 1 and P 2 are complementary projections of rank k ∈ {1, …, n ? 1} and rank n ? k, respectively, and with a higher-order infinitesimal perturbation f:[0, ∞) × UR n that is piecewise continuous in t ≥ 0 and continuous in y in some neighborhood U of the origin.
  相似文献   

12.
We prove that the divisor function d(n) counting the number of divisors of the integer n is a good weighting function for the pointwise ergodic theorem. For any measurable dynamical system (X, A, ν, τ) and any fL p (ν), p > 1, the limit
$$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{\Sigma _{k = 1}^nd\left( k \right)}}\sum\limits_{k = 1}^n {d\left( k \right)f\left( {{\tau ^k}x} \right)} $$
exists ν-almost everywhere. The proof is based on Bourgain’s method, namely the circle method based on the shift model. Using more elementary ideas we also obtain similar results for other arithmetical functions, like the θ(n) function counting the number of squarefree divisors of n and the generalized Euler totient function J s (n) = Σ d|n d s μ(n/d), s > 0.
  相似文献   

13.
Let F be a field of characteristic zero and E be the unitary Grassmann algebra generated over an infinite-dimensional F-vector space L. Denote by \(\mathcal{E} = \mathcal{E}^{(0)} \oplus \mathcal{E}^{(1)}\) an arbitrary ?2-grading of E such that the subspace L is homogeneous. Given a superalgebra A = A (0)A (1), define the superalgebra \(A\hat \otimes \mathcal{E}\) by \(A\hat \otimes \mathcal{E} = (A^{(0)} \otimes \mathcal{E}^{(0)} ) \oplus (A^{(1)} \otimes \mathcal{E}^{(1)} )\). Note that when E is the canonical grading of E then \(A\hat \otimes \mathcal{E}\) is the Grassmann envelope of A. In this work we find bases of ?2-graded identities and we describe the ?2-graded codimension and cocharacter sequences for the superalgebras \(UT_2 (F)\hat \otimes \mathcal{E}\), when the algebra UT 2(F) of 2 ×2 upper triangular matrices over F is endowed with its canonical grading.  相似文献   

14.
For a field F and a family of central simple F-algebras we prove that there exists a regular field extension E/F preserving indices of F-algebras such that all the algebras from the family are cyclic after scalar extension by E. Let \( \mathcal{A} \) be a central simple algebra over a field F of degree n with a primitive nth root of unity ρ n . We construct a quasi-affine F-variety Symb(\( \mathcal{A} \)) such that for a field extension L/F Symb(\( \mathcal{A} \)) has an L-rational point if and only if \( \mathcal{A}{ \otimes_F}L \) is a symbol algebra. Let \( \mathcal{A} \) be a central simple algebra over a field F of degree n and K/F be a cyclic field extension of degree n. We construct a quasi-affine F-variety C(\( \mathcal{A} \) ,K) such that, for a field extension L/F with the property [KL : L] = [K : F], the variety C(\( \mathcal{A} \) ,K) has an L-rational point if and only if KL is a subfield of \( \mathcal{A}{ \otimes_F}L \).  相似文献   

15.
For ?1≤B<A≤1, let \(\mathcal {S}^{*}(A,B)\) denote the class of normalized analytic functions \(f(z)= z+{\sum }_{n=2}^{\infty }a_{n} z^{n}\) in |z|<1 which satisfy the subordination relation z f (z)/f(z)?(1 + A z)/(1 + B z) and Σ?(A,B) be the corresponding class of meromorphic functions in |z|>1. For \(f\in \mathcal {S}^{*}(A,B)\) and λ>0, we shall estimate the absolute value of the Taylor coefficients a n (?λ,f) of the analytic function (f(z)/z)?λ . Using this we shall determine the coefficient estimate for inverses of functions in the classes \(\mathcal {S}^{*}(A,B)\) and Σ?(A,B).  相似文献   

16.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

17.
In this paper we obtain a necessary and sufficient condition on the sequence of natural numbers {q n } such that the almost everywhere convergence of the cubic partial sums S qn (x) of the multiple Haar series Σn a nχn(x) and the condition lim inf \(\lambda \cdot mes\left\{ {x:\begin{array}{*{20}{c}} {\sup } \\ n \end{array}\left| {S{}_{qn}\left( x \right)} \right| \succ \lambda } \right\} = 0\), imply that the coefficients a n can be uniquely determined by the sum of the series. Also, we have obtained a necessary and sufficient condition for the series \(\sum\limits_{n = 1}^\infty {{\varepsilon _n}{a_n}} {\chi _n}\left( x \right)\) with an arbitrary bounded sequence {ε n} to be a Fourier-Haar series of an A-integrable function.  相似文献   

18.
For the extended Dirichlet space \(\mathcal {F}_{e}\) of a general irreducible recurrent regular Dirichlet form \((\mathcal {E},\mathcal {F})\) on L 2(E;m), we consider the family \(\mathbb {G}(\mathcal {E})=\{X_{u};u\in \mathcal {F}_{e}\}\) of centered Gaussian random variables defined on a probability space \(({\Omega }, \mathcal {B}, \mathbb {P})\) indexed by the elements of \(\mathcal {F}_{e}\) and possessing the Dirichlet form \(\mathcal {E}\) as its covariance. We formulate the Markov property of the Gaussian field \(\mathbb {G}(\mathcal {E})\) by associating with each set A ? E the sub-σ-field σ(A) of \(\mathcal {B}\) generated by X u for every \(u\in \mathcal {F}_{e}\) whose spectrum s(u) is contained in A. Under a mild absolute continuity condition on the transition function of the Hunt process associated with \((\mathcal {E}, \mathcal {F})\), we prove the equivalence of the Markov property of \(\mathbb {G}(\mathcal {E})\) and the local property of \((\mathcal {E},\mathcal {F})\). One of the key ingredients in the proof is in that we construct potentials of finite signed measures of zero total mass and show that, for any Borel set B with m(B) >?0, any function \(u\in \mathcal {F}_{e}\) with s(u) ? B can be approximated by a sequence of potentials of measures supported by B.  相似文献   

19.
In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.  相似文献   

20.
Let v 1,…,v n be unit vectors in ? n such that v i ?v j =?w for ij, where \(-1. The points ∑ i=1 n λ i v i (1≥λ 1???λ n ≥0) form a “Hill-simplex of the first type,” denoted by \(\mathcal {Q}_{n}(w)\). It was shown by Hadwiger in 1951 that \(\mathcal {Q}_{n}(w)\) is equidissectable with a cube. In 1985, Schöbi gave a three-piece dissection of \(\mathcal {Q}_{3}(w)\) into a triangular prism \(c\mathcal {Q}_{2}(\frac{1}{2})\times I\), where I denotes an interval and \(c=\sqrt{2(w+1)/3}\). In this paper, we generalize Schöbi’s dissection to an n-piece dissection of \(\mathcal {Q}_{n}(w)\) into a prism \(c\mathcal {Q}_{n-1}(\frac{1}{n-1})\times I\), where \(c=\sqrt{(n-1)(w+1)/n}\). Iterating this process leads to a dissection of \(\mathcal {Q}_{n}(w)\) into an n-dimensional rectangular parallelepiped (or “brick”) using at most n! pieces. The complexity of computing the map from \(\mathcal {Q}_{n}(w)\) to the brick is O(n 2). A second generalization of Schöbi’s dissection is given which applies specifically in ?4. The results have applications to source coding and to constant-weight binary codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号