首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The hitherto unknown complexes, [M2(CO)6(μ-CO)(μ-L)], [M = Cr; 1, Mo; 2, W; 3] and [M2(CO)6(μ-CO)(μ-L′)], [M = Cr; 4, Mo; 5, W; 6] have been synthesized by the photochemical reactions of photogenerated intermediate, M(CO)5THF (M = Cr, Mo, W) with thio Schiff base ligands, N,N′-bis(2-aminothiophenol)-1,4-bis(2-carboxaldehydephenoxy)butane (H 2 L) and N,N′-bis(2-aminothiophenol)-1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane (H 2 L′). The complexes have been characterized by elemental analysis, LC-mass spectrometry, magnetic studies, FT-IR and 1H NMR spectroscopy. The spectroscopic studies show that H 2 L and H 2 L′ ligands are converted to benzothiazole derivatives, L and L′ after UV irradiation and coordinated to the central metal as bridging ligands via the central azomethine nitrogen and sulphur atoms in 1–6.  相似文献   

2.
Two semi-rigid bipyrazolyl ligands, namely 2,3,5,6-tetramethyl-1,4-bis[(3′,5′-dimethyl-1H -pyrazol-4′-yl)methylene]benzene (H2L) and 2,3,5,6-tetramethyl-1,4-bis[(3′,5′-diphenyl-1H -pyrazol-4′-yl)methylene]benzene (H2L′), and their Ag(I) and Cu(II) complexes have been prepared and structurally characterized by means of X-ray analysis. In the structures of the metal complexes, namely [Ag2(H2L)2](BF4)2·2H2O (1), [Ag(H2L)(NO3)]n (2), [Cu2(H2L)4(SO4)2]·11H2O (3), and {[Ag(H2L′)]BF4}n (4), the bipyrazoles act as bridging ligands to connect two metal atoms. Complexes 2 and 4 exhibit 1-D polymeric structures, while 1 and 3 are discrete molecules with a rectangular dimer or tetragonal prismatic shapes, respectively. Two different conformations, namely cis and trans, have been observed for these bipyrazolyl ligands.  相似文献   

3.
Two tetranuclear copper(II) complexes bridged by asymmetrical N,N′-bis(substituted)oxamides have been synthesized and characterized as [Cu4(dmapob)2(Me2bpy)2](pic)2·6H2O (1) and [Cu4(oxbe)2(dabt)2](pic)2 (2), where H3dmapob and H3oxbe denote N-benzoato-N′-[3-(dimethylamino)propyl]oxamido and N-benzoato-N′-(2-aminoethyl)oxamide, respectively; and Me2bpy, dabt, and pic represent 4,4′-dimethyl-2,2′-bipyridine 2,2′-diamino-4,4′-bithiazole, and 2,4,6-trinitrophenol, respectively. Complex 1 was characterized by elemental analyses, IR and electronic spectra, and single-crystal X-ray diffraction. Its structure consists of two asymmetrical binuclear copper(II) units linked by carboxyl bridges into a circular tetranuclear copper(II) complex with an embedded center of inversion. The copper(II) centers are in square-planar and distorted square-pyramidal environments. Hydrogen bonds and aromatic stacking interactions link the tetranuclear copper(II) fragments into a 3D supramolecular structure. The interactions of complexes 1 and 2 with herring sperm DNA (HS-DNA) were investigated by electronic and fluorescence spectra and viscosity measurements. Both complexes bind to HS-DNA via the intercalative mode, and complex 2 displays a significant binding propensity to HS-DNA.  相似文献   

4.

Abstract  

Based on the polydentate ligand 3,5-bis(3-pyridyl)-1H-1,2,4-triazole (3,3′-Hbpt), three coordination compounds [Zn(3,3′-Hbpt)(ip)]·2H2O (1), [Zn(3,3′-Hbpt)(5-NO2-ip)]·H2O (2), and [Zn(3,3′-Hbpt)2(H2pm)(H2O)2]·2H2O (3) have been hydrothermally constructed with H2ip, 5-NO2-H2ip and H4pm as auxiliary ligands (H2ip = isophthalic acid, 5-NO2-H2ip = 5-NO2-isophthalic acid, H4pm = pyromellitic acid). Structural analysis reveals that Zn(II) ions serve as four-coordinated, five-coordinated, and six-coordinated connectors in 13, respectively, while 3,3′-Hbpt adopts μ-Npy and Npy coordination modes in two typical conformations in these target coordination compounds. Dependently the applied ligand, compounds 13 exhibit either 1D channel, cage or chain structures, respectively. In addition, the luminescence properties of 13 have been investigated in the solid state at room temperature.  相似文献   

5.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

6.
Abstract  The electrospray mass spectrometric (ESI–MS) behavior of the complexes trans-dichloro(ethylenediamine-N,N′-di-3-propionato)platinum(IV), trans-dibromo(ethylenediamine-N,N′-di-3-propionato)platinum(IV), dichloro(ethylenediamine-N,N′-di-3-propionic acid)platinum(II), tetrachloro(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV), chlorotribromo(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV), and dichloro(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(II), with the formulae trans-[PtCl2(eddp)] (1), trans-[PtBr2(eddp)] (2), [PtCl2(H2eddp)] (3), [PtCl4(Bu2eddp)] (4), [PtBr3Cl(Bu2eddp)] (5), and [PtCl2(Bu2eddp)]·H2O (6), is reported. The deprotonated molecular ions or halide adducts are usually observed. ESI–MS data demonstrate the usefulness of the method for efficient characterization of metal complexes in solution. Graphical Abstract     相似文献   

7.
The reaction between Re2(DMBA)4Cl2 and NaN(CN)2 resulted in Re2(DMBA)4(N(CN)2)2 (1a), where DMBA is N,N′-dimethylbenzamidinate. Molecular compounds Re2(DMBA)4(ReO4)2 (1b) and Re2(DMBA)4(OP(O)(OH)Ph)2 (1c) were obtained through the reactions between Re2(DMBA)4(NO3)2 and the respective monoanion. The dirhenium(III) coordination polymers [Re2(DMBA)4(μ-O,O′-WO4)·2H2O] (2a), [Re2(DMBA)4(μ-O,O′-MoO4)·2H2O] (2b), and [Re2(DMBA)4(μ-O,O′-1,4-(O2C)2C6H4)·2H2O] (2c) were similarly prepared through slow diffusion of Re2(DMBA)4(NO3)2 in acetonitrile into aqueous solution containing the respective dianion. All new compounds were characterized with single crystal X-ray diffraction, which revealed the retention of the essential structural features of Re2(DMBA)4 unit upon the formation of coordination polymers.  相似文献   

8.
In this study, {[Cu2(µ-HCO2)4](µ-Mepyrz)} n (1), [Cu2(µ-HCO2)4(Mepyrz)2] (2), {[Cu2(µ-AcO)4](µ-Mepyrz)} n (3), [Cu2(µ-AcO)4(Mepyrz)2] (4), [Cu2(µ-AcO)4(2,3-Me2pyrz)2] (5), [Cu2(µ-AcO)4(2,6-Me2pyrz)2] (6), and {[Cu2(µ-AcO)4](µ-2,5-Me2pyrz)} n (7) have been synthesized and characterized by chemical analysis and electronic spectroscopy. Compounds 2, 4, 5, and 6, characterized by single-crystal X-ray diffraction, are composed of molecular dimers based on a paddle-wheel motif with two coppers, four syn–syn carboxylates, and two ligands coordinated to copper in the axial positions. In 7, chains of [Cu2(µ-AcO)4] dimers with 2,5-Me2pyrz as bridging ligands are formed. Magnetic properties and electron paramagnetic resonance results of the compounds are also described.  相似文献   

9.
Abstract  Three new complexes, [Co(L)2(SCN)2] (1), [Co2(L)4(μ-N3)2](ClO4)2(H2O)1.5 (2), and [Ni(L)3](ClO4)2(CH3OH)2 (3), have been synthesized and structurally characterized, where L is 3-(3′,5′-dimethyl-pyrazole)-6-Cl-pyridazine. Single crystal X-ray analyses show that all three complexes crystallize in the monoclinic crystal system. In complex (1), the Co(II) atom is in a distorted octahedral environment consisting of four nitrogen atoms from two ligands and two nitrogen atoms of SCN, which is further extended into a 1D chain by intermolecular hydrogen bonds. Two Co(II) atoms in complex (2) are linked by two azide anions in a μ-1,1 mode to make a binuclear structure. Without any auxiliary ligand, the Ni(II) atom in complex (3) adopts a distorted octahedral geometry involving six nitrogen atoms from three ligands. The electronic absorption spectra of the title compounds are discussed as well. The effects of auxiliary ligands on the structures and properties of the title complexes have been studied and discussed. Graphical Abstract  Three new complexes, [Co(L)2(SCN)2] (1), [Co2(L)4(μ-N3)2](ClO4)(H2O)1.5 (2) and [Ni(L)3](ClO4)2(CH3OH)2 (3), have been synthesized and structurally characterized, where L is 3-(3′,5′-dimethyl-pyrazole)-6-Cl-pyridazine. Complexes (1) and (3) are mononuclear compounds, which are different from the binuclear complex (2). Auxiliary ligands are the main reasons that results in the different structures of the title complexes and their different fungicidal activities. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
[Ag2(μ-dppm)2(tptz)(MeCN)](SbF6)2·2H2O·2MeCN (1), [Ag2(μ-dppm)2(tptz)2](SbF6)2·1.75H2O (2) and [Ag2(μ-dppm)(tptz)2](SbF6)2· 2MeCN (3) were synthesized by self-assembly with metal diphosphine [Ag2(μ-dppm)2 (MeCN)2](SbF6) 2 and tptz as components in different molar ratios [(dppm = bis(diphenylphosphino)methane and tptz = 2,4,6-tris(2′-pyridyl)-1,3,5-triazine)] and characterized by IR spectra, elemental analysis, 1H NMR spectra, 31P NMR spectra and Visible–Ultraviolet spectra. Structures of all the complexes were determined by X-ray analysis. π − π interactions were found in complex (3). Further studies show that all the complexes were of well luminescent properties both in solution and solid state.  相似文献   

11.
Reaction of [Pd(dppe)Cl2/Br2] with AgOTf in a dichloromethane medium followed by ligand addition led to [Pd(dppe)(OSO2CF3)2] and then [Pd(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (1–3), abbreviated as a N,N′-chelator, where N(imidazole) and N(azo) are represented by N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion, dppe = 1,2-bis-(diphenylphosphinoethane)]. 31P “1H” NMR confirmed that due to the two phosphorus atom interaction in the azoimine symmetrical environment one sharp peak was formed. The 1H NMR spectral measurements suggest that azo-imine link with lot of phenyl protons in the aromatic region. 13C (1H) NMR spectrum, 1H, 1H COSY and 1H, 13C HMQC spectrum assign the solution structure and stereo-retentive conformation in each complex.  相似文献   

12.
Six new μ-terephthalato iron(III) binuclear complexes have been prepared and identified: [Fe2(TPHA)(L)4]-(ClO4)4 [L = 2,2′-bipyridine (bpy); 1,10-phenanthroline (phen); 4,4′-dimethyl-2,2′-bipyridine (Me2bpy); 5-methyl-1,10-phenanthroline (Me-phen); 5-chloro-1,10-phenanthroline (Cl-phen) and 5-nitro-1,10-phenanthroline (NO2-phen)]; where TPHA = the terephthalate dianion. Based on the elemental analyses, molar conductance and magnetic moments of room-temperature measurements, and spectroscopic studies, extended TPHA-bridged structures consisting of two iron(III) ions, each in an octahedral environment, are proposed for these complexes. The [Fe2(TPHA)(Me-phen)4](ClO4)4 (1) and [Fe2(TPHA)(phen)4](ClO4)4 (2) complexes were characterized by variable temperature magnetic susceptibility (4–300 K) measurements and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, Ĥ = −2 1 Ŝ 2, giving the exchange integrals J = −1.05 cm−1 for (1) and J = −9.28 cm−1 for (2). This result indicates the presence of a weak antiferromagnetic spin-exchange interaction between the metal ions within each molecule. The influence of the terminal ligand methyl substituents on magnetic interactions between the metals is also discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Two metal-organic coordination polymers [Cu(bpy)2(H2O)2](NO3)2·4.5C2H5OH (1) and [Cu2(bpy)(H2O)(L-pha) 2](NO3)2·H2O (2) (L-Hpha = L-phenylalanine, bpy = 4,4′-bipyridyl) are prepared by slow evaporation of an aqueous alcoholic solution of copper nitrate, L-phenylalanine, and 4,4′-bipyridyl. The structure and composition of the obtained compounds are determined by single crystal XRD. The framework of compound 1 is positively charged and forms two types of intersecting channels. Compound 2 is a homochiral metal-organic coordination polymer whose structure contains L-phenylalanine anions.  相似文献   

14.

Abstract  

Three copper(II), one zinc(II), and one ferrous(II) complexes having 3-bromo or 3,8-dibromo-1,10-phenanthroline ligand with different metal/ligand molar ratios, formulated as [Cu(3-bromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (1), [Cu(3,8-dibromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (2), [Cu(3,8-dibromo-phen)(ClO4)(H2O)3](ClO4)(H2O)3 (3), [Zn(3,8-dibromo-phen)2(H2O)2](ClO4)2(H2O)2 (4), and [Fe(3,8-dibromo-phen)3](ClO4)2(H2O)(CH4O)(C3H6O)2 (5) (phen = 1,10-phenanthroline), have been synthesized and characterized in this paper. X-ray single-crystal diffraction studies reveal the different crystallographic symmetry and packing fashions between neighboring phen rings in 1:1 Cu(II) complexes 13 due to the alteration of bromo substituent 1,10-phenanthroline ligands and coordinated or free solvent molecules. Additionally, in 1:2 Zn(II) and 1:3 Fe(II) complexes 4 and 5, continuous π–π stacking and alternating π–π and dimeric p–π stacking are found.  相似文献   

15.
Four silver(I) complexes, namely [Ag2(bpe)2](bdc)·8H2O (1), [Ag2(bpe)2(da)]·4H2O (2), [Ag4(bpe)3(bptc)]·9H2O (3), and Ag(bpe)2(bpdc)2 (4), have been successfully synthesized by the reactions between AgNO3, 1,2-bis(4-pyridyl)ethane (bpe) and different carboxylic acids, including 1,3-benzenedicarboxylic acid (H2bdc), diphenic acid (H2da), 3,3′,4,4′-biphenyltetracarboxylic acid (H4bptc), and 2,2′-bipyridine-3,3′-dicarboxylic acid (H2bpdc). All four compounds were characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction. In (1), the Ag(I) atoms, in linear geometry, are joined into 1-D infinite cationic bpe-silver chains, and discrete bdc2− anions compensate the charge of the crystal structure. In (2), the Ag(I) atoms, adopting tetrahedral and trigonal geometries, are linked by bpe and da2− ligands into neutral double chains. In (3), the Ag(I) atoms, in T-shaped and linear environments, are coordinated by bpe and multidentate bptc4− ligands to construct a 2-D network. And in (4), the Ag(I) atoms, with trigonal and T-shaped coordination geometries, are coordinated by bpe and bpdc2− ligands to build up a 3-D framework. The different anions play different and important roles in directing the final crystal structures.  相似文献   

16.
合成和表征了5个螺旋配位聚合物{[Cu(Hbpma)(H2O)4]2(SO4)3·3.5H2O}n (1)、{[Ni(Hbpma)(H2O)4]4(SO4)6·10.75H2O}n (2)、{[Mn(Hbpma)(H2O)4](SO4)1.5·3H2O}n (3)、{[Zn(Hbpma)(H2O)4]4(SO4)6·4H2O·4CH3OH}n (4)和{[Cu(Hbpma)2(H2O)2](SO4)2·9H2O}n (5), 其中bpma代表N,N'-双(3-吡啶甲基)胺。晶体结构分析表明配合物1~4为一维链状结构, 配合物5为二维层状结构, 其中金属离子由质子化的bpma配体桥连。值得注意的是, 采取反-反式构象的柔性bpma配体使得配合物12为假螺旋链结构, 配合物34为螺旋链结构, 配合物5为螺旋层结构。同时研究了配合物的磁性和热稳定性。  相似文献   

17.
Four metal complexes of N,N′-bis(salicyl)-2,6-pyridine-dicarbohydrazide ligand (H6L), [CoII(H4L)(H2O)2]·2DMF (1), [ZnII(H4L)(H2O)2]·2DMF (2), [CdII(H4L)(Py)2]·DMF·Py (3), and [CoIICo2III(H4L)4(H2O)4]·DMF·H2O (4), were synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Structural studies revealed that complexes 13 present discrete mononuclear structures and complex 4 displays a centrosymmetric mixed-valence trinuclear structure. All four complexes are further extended into interesting two- or three-dimensional supramolecular frameworks. The luminescent properties of 2 and 3 were studied, which show emissions with maxima at 485 nm upon excitation at 396 nm for 2 and 476 nm upon excitation at 397 nm for 3, respectively.  相似文献   

18.
New mixed-ligand complexes, [M2(BAMP)(bipy)2][MCl4]2, M=Co+2(1), Cu+2(2), [M2(TAMEN)(bipy)2][MCl4]2, M=Fe+2(3), Co2+(4), and [Fe2(TAMEN)(bipy)2][FeCl6]2 (5), where BAMP and TAMEN stand for the Mannich bases N,N′-bis(antipyryl-4-methylene)-piperazine and N,N′-tetra(antipyryl-4-methylene)-1,2-ethane-diamine, respectively, have been obtained and characterized by elemental analyses, conductometric and magnetic susceptibility measurements at room temperature, mass spectrometry, UV-Vis, infrared, and mass spectroscopy, and 1H NMR spectra for the ligands.  相似文献   

19.
Mannich reaction of 2-Amino propanol, 2-tert-butyl-4-methylphenol, and formaldehyde in the ratio of 1:2:2 provides a new compound, N-(1-propanol)-N,N-bis(3-tert-butyl-5-methyl-2-hydroxybenxyl)amine (H3L), which has been characterized by X-ray crystallography and elemental analysis. In the presence of Et3N, the reaction of H3L and FeCl3·6H2O gives a dinuclear Fe(III) complex [Fe2L2] 1, which has been characterized by X-ray crystallography, magnetic measurement, and cyclic voltammetry. The value of μeff at room temperature (5.97 μB) is much less than the expected spin-only value (8.37 μB) of two high spin (hs) Fe3+ (S = 5/2) ions [μ = g[∑ZS(S + 1)]1/2], indicating there are strong coupling interactions between Fe3+ ions. The magnetic behavior of 1 denotes the occurrence of intramolecular antiferromagnetic interactions (J = −13.35 cm−1 ). CV of 1 reveals two reversible waves at 0.433 and 1.227 V versus AgCl/Ag, which can be ascribed to the successive redox coupling of FeIIFeII/FeIIIFeII and FeIIIFeII/FeIIIFeIII, respectively.  相似文献   

20.
The mononuclear complexes (η3-terpy)M(Piv)2·MeCN (M = Fe ii (3) and Co ii (4), and Piv is the pivalate anion) were synthesized by the reactions of polymeric iron(ii) and cobalt(ii) pivalates with 2,2′:6′,2″-terpyridine (terpy). The oxidation of compound 3 affords the pentanuclear heterospin iron(ii,iii) complex (η3-terpy)Fe54-O)(μ3-OH)(μ-OH)2(μ-Piv)71-Piv)2 (5). All compounds were characterized by X-ray diffraction. Dedicated to the 90th anniversary of the L. Ya. Karpov Institute of Physical Chemistry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1186–1190, June, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号